L10n55
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n55's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X11,17,12,16 X8,9,1,10 X17,9,18,20 X3,12,4,13 X7,14,8,15 X13,6,14,7 X5,18,6,19 X19,4,20,5 X15,2,16,3 |
| Gauss code | {1, 10, -5, 9, -8, 7, -6, -3}, {3, -1, -2, 5, -7, 6, -10, 2, -4, 8, -9, 4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^3 (-v)+u^2 v^3-3 u^2 v^2+3 u^2 v-2 u^2-2 u v^3+3 u v^2-3 u v+u-v^2}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{7}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{4}{q^{5/2}}-\frac{2}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{7}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z+a^9 z^{-1} -2 a^7 z^3-3 a^7 z-a^7 z^{-1} +a^5 z^5+2 a^5 z^3+a^5 z-2 a^3 z^3-3 a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^5-3 a^{11} z^3+2 a^{11} z+2 a^{10} z^6-4 a^{10} z^4+a^{10} z^2+3 a^9 z^7-8 a^9 z^5+9 a^9 z^3-7 a^9 z+a^9 z^{-1} +a^8 z^8+3 a^8 z^6-10 a^8 z^4+6 a^8 z^2-a^8+5 a^7 z^7-11 a^7 z^5+12 a^7 z^3-7 a^7 z+a^7 z^{-1} +a^6 z^8+2 a^6 z^6-4 a^6 z^4+3 a^6 z^2+2 a^5 z^7-2 a^5 z^5+3 a^5 z^3-a^5 z+a^4 z^6+2 a^4 z^4-2 a^4 z^2+3 a^3 z^3-3 a^3 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



