L10a23
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a23's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X18,9,19,10 X8,17,9,18 X4,19,1,20 X14,12,15,11 X10,4,11,3 X12,5,13,6 X20,13,5,14 X2,16,3,15 |
| Gauss code | {1, -10, 7, -5}, {8, -1, 2, -4, 3, -7, 6, -8, 9, -6, 10, -2, 4, -3, 5, -9} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(v^2+1\right) \left(v^2-3 v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-4 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{14}{q^{7/2}}+\frac{12}{q^{9/2}}-\frac{10}{q^{11/2}}+\frac{7}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-2 a^7 z-a^7 z^{-1} +2 a^5 z^5+6 a^5 z^3+5 a^5 z+2 a^5 z^{-1} -a^3 z^7-4 a^3 z^5-5 a^3 z^3-2 a^3 z+a z^5+2 a z^3-a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-a^{10} z^2+3 a^9 z^5-2 a^9 z^3+6 a^8 z^6-8 a^8 z^4+6 a^8 z^2-2 a^8+7 a^7 z^7-10 a^7 z^5+8 a^7 z^3-4 a^7 z+a^7 z^{-1} +5 a^6 z^8-2 a^6 z^6-9 a^6 z^4+12 a^6 z^2-5 a^6+2 a^5 z^9+7 a^5 z^7-23 a^5 z^5+20 a^5 z^3-9 a^5 z+2 a^5 z^{-1} +10 a^4 z^8-23 a^4 z^6+12 a^4 z^4+3 a^4 z^2-3 a^4+2 a^3 z^9+4 a^3 z^7-22 a^3 z^5+18 a^3 z^3-4 a^3 z+5 a^2 z^8-14 a^2 z^6+10 a^2 z^4-2 a^2 z^2+a^2+4 a z^7-12 a z^5+8 a z^3+a z-a z^{-1} +z^6-2 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



