L11n433
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n433's Link Presentations]
| Planar diagram presentation | X8192 X14,4,15,3 X12,14,7,13 X2738 X22,10,13,9 X6,22,1,21 X20,16,21,15 X5,17,6,16 X11,19,12,18 X17,11,18,10 X19,5,20,4 |
| Gauss code | {1, -4, 2, 11, -8, -6}, {4, -1, 5, 10, -9, -3}, {3, -2, 7, 8, -10, 9, -11, -7, 6, -5} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u v w+1) \left(u v w^2-u w^2+u-v w^2+v-1\right)}{u v w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{10}-q^9+q^8-q^7+q^6+q^5+2 q^3-q^2+q }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -16 z^4 a^{-6} +6 z^4 a^{-8} +10 z^2 a^{-4} -17 z^2 a^{-6} +8 z^2 a^{-8} -z^2 a^{-10} +6 a^{-4} -9 a^{-6} +3 a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-12} -3 z^2 a^{-12} +z^5 a^{-11} -3 z^3 a^{-11} +z^6 a^{-10} -5 z^4 a^{-10} +5 z^2 a^{-10} -2 a^{-10} +z^7 a^{-9} -6 z^5 a^{-9} +7 z^3 a^{-9} +2 z^8 a^{-8} -13 z^6 a^{-8} +22 z^4 a^{-8} -11 z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} +z^9 a^{-7} -5 z^7 a^{-7} +z^5 a^{-7} +13 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} +3 z^8 a^{-6} -21 z^6 a^{-6} +44 z^4 a^{-6} -35 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} +z^9 a^{-5} -6 z^7 a^{-5} +8 z^5 a^{-5} +3 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +16 z^4 a^{-4} -16 z^2 a^{-4} - a^{-4} z^{-2} +7 a^{-4} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



