L10a18
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a18's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,10,13,9 X18,13,19,14 X16,7,17,8 X8,17,9,18 X20,15,5,16 X14,19,15,20 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 5, -6, 3, -2, 10, -3, 4, -8, 7, -5, 6, -4, 8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)^3 \left(v^2+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{10}{q^{9/2}}-\frac{11}{q^{7/2}}+\frac{9}{q^{5/2}}+q^{3/2}-\frac{9}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{2}{q^{15/2}}+\frac{5}{q^{13/2}}-\frac{8}{q^{11/2}}-3 \sqrt{q}+\frac{5}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-3 a^7 z-2 a^7 z^{-1} +2 a^5 z^5+8 a^5 z^3+11 a^5 z+5 a^5 z^{-1} -a^3 z^7-5 a^3 z^5-10 a^3 z^3-10 a^3 z-3 a^3 z^{-1} +a z^5+3 a z^3+2 a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^4 a^{10}+2 z^2 a^{10}-a^{10}-2 z^5 a^9+2 z^3 a^9-3 z^6 a^8+2 z^4 a^8-4 z^7 a^7+6 z^5 a^7-8 z^3 a^7+5 z a^7-2 a^7 z^{-1} -3 z^8 a^6+z^6 a^6+6 z^4 a^6-11 z^2 a^6+5 a^6-z^9 a^5-7 z^7 a^5+24 z^5 a^5-29 z^3 a^5+17 z a^5-5 a^5 z^{-1} -6 z^8 a^4+11 z^6 a^4+2 z^4 a^4-11 z^2 a^4+5 a^4-z^9 a^3-6 z^7 a^3+26 z^5 a^3-29 z^3 a^3+16 z a^3-3 a^3 z^{-1} -3 z^8 a^2+6 z^6 a^2+2 z^4 a^2-4 z^2 a^2-3 z^7 a+10 z^5 a-10 z^3 a+4 z a-z^6+3 z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



