L10n16
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n16's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X9,14,10,15 X8493 X12,5,13,6 X20,13,5,14 X11,16,12,17 X15,10,16,11 X2,18,3,17 |
| Gauss code | {1, -10, 5, -3}, {6, -1, 2, -5, -4, 9, -8, -6, 7, 4, -9, 8, 10, -2, 3, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{9}{q^{9/2}}-\frac{9}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{3}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{9}{q^{13/2}}-\frac{10}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z-3 a^7 z^3-5 a^7 z-2 a^7 z^{-1} +2 a^5 z^5+7 a^5 z^3+10 a^5 z+5 a^5 z^{-1} -3 a^3 z^3-6 a^3 z-3 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+z^3 a^{11}-4 z^6 a^{10}+8 z^4 a^{10}-3 z^2 a^{10}-a^{10}-5 z^7 a^9+9 z^5 a^9-3 z^3 a^9+2 z a^9-2 z^8 a^8-6 z^6 a^8+20 z^4 a^8-10 z^2 a^8-10 z^7 a^7+21 z^5 a^7-17 z^3 a^7+9 z a^7-2 a^7 z^{-1} -2 z^8 a^6-5 z^6 a^6+15 z^4 a^6-14 z^2 a^6+5 a^6-5 z^7 a^5+11 z^5 a^5-19 z^3 a^5+15 z a^5-5 a^5 z^{-1} -3 z^6 a^4+3 z^4 a^4-7 z^2 a^4+5 a^4-6 z^3 a^3+8 z a^3-3 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



