L10a66
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a66's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X6718 X16,11,17,12 X14,6,15,5 X4,16,5,15 X20,17,7,18 X18,14,19,13 X12,20,13,19 |
| Gauss code | {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 5, -10, 9, -6, 7, -5, 8, -9, 10, -8} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(1)^2 t(2)^4+t(1) t(2)^4+3 t(1)^2 t(2)^3-3 t(1) t(2)^3+t(2)^3-3 t(1)^2 t(2)^2+3 t(1) t(2)^2-3 t(2)^2+t(1)^2 t(2)-3 t(1) t(2)+3 t(2)+t(1)-1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+2 q^{3/2}-4 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{9}{q^{7/2}}+\frac{7}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^5+3 a^5 z^3+2 a^5 z+a^5 z^{-1} -a^3 z^7-5 a^3 z^5-9 a^3 z^3-8 a^3 z-2 a^3 z^{-1} +2 a z^5+8 a z^3-z^3 a^{-1} +8 a z-3 z a^{-1} +2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^3 a^9-3 z^4 a^8+z^2 a^8-5 z^5 a^7+4 z^3 a^7-z a^7-6 z^6 a^6+7 z^4 a^6-z^2 a^6-6 z^7 a^5+11 z^5 a^5-5 z^3 a^5+2 z a^5-a^5 z^{-1} -4 z^8 a^4+7 z^6 a^4-z^9 a^3-6 z^7 a^3+29 z^5 a^3-31 z^3 a^3+12 z a^3-2 a^3 z^{-1} -6 z^8 a^2+22 z^6 a^2-22 z^4 a^2+7 z^2 a^2-a^2-z^9 a-z^7 a+18 z^5 a-29 z^3 a+14 z a-2 a z^{-1} -2 z^8+9 z^6-12 z^4+5 z^2-z^7 a^{-1} +5 z^5 a^{-1} -8 z^3 a^{-1} +5 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



