L10n6
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n6's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X2,16,3,15 |
| Gauss code | {1, -10, 5, -3}, {-6, -1, 2, -5, -4, 6, -8, 9, -7, 4, 10, -2, 3, 8, -9, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+2 q^{11/2}-3 q^{9/2}+4 q^{7/2}-4 q^{5/2}+4 q^{3/2}-4 \sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-3} -2 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +a z-5 z a^{-1} +6 z a^{-3} -2 z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-2} -z^8 a^{-4} -z^7 a^{-1} -3 z^7 a^{-3} -2 z^7 a^{-5} +4 z^6 a^{-2} +2 z^6 a^{-4} -2 z^6 a^{-6} +5 z^5 a^{-1} +12 z^5 a^{-3} +6 z^5 a^{-5} -z^5 a^{-7} -6 z^4 a^{-2} +z^4 a^{-4} +6 z^4 a^{-6} -z^4-a z^3-13 z^3 a^{-1} -19 z^3 a^{-3} -4 z^3 a^{-5} +3 z^3 a^{-7} -2 z^2 a^{-2} -5 z^2 a^{-4} -3 z^2 a^{-6} +3 a z+11 z a^{-1} +11 z a^{-3} +2 z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



