L10n6

From Knot Atlas
Revision as of 02:45, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n5.gif

L10n5

L10n7.gif

L10n7

L10n6.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n6 at Knotilus!


Link Presentations

[edit Notes on L10n6's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X9,14,10,15 X8493 X5,11,6,10 X13,5,14,20 X11,19,12,18 X19,13,20,12 X2,16,3,15
Gauss code {1, -10, 5, -3}, {-6, -1, 2, -5, -4, 6, -8, 9, -7, 4, 10, -2, 3, 8, -9, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L10n6 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^{13/2}+2 q^{11/2}-3 q^{9/2}+4 q^{7/2}-4 q^{5/2}+4 q^{3/2}-4 \sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}} }[/math] (db)
Signature 1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^5 a^{-3} -2 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +a z-5 z a^{-1} +6 z a^{-3} -2 z a^{-5} +2 a z^{-1} -4 a^{-1} z^{-1} +3 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -z^8 a^{-2} -z^8 a^{-4} -z^7 a^{-1} -3 z^7 a^{-3} -2 z^7 a^{-5} +4 z^6 a^{-2} +2 z^6 a^{-4} -2 z^6 a^{-6} +5 z^5 a^{-1} +12 z^5 a^{-3} +6 z^5 a^{-5} -z^5 a^{-7} -6 z^4 a^{-2} +z^4 a^{-4} +6 z^4 a^{-6} -z^4-a z^3-13 z^3 a^{-1} -19 z^3 a^{-3} -4 z^3 a^{-5} +3 z^3 a^{-7} -2 z^2 a^{-2} -5 z^2 a^{-4} -3 z^2 a^{-6} +3 a z+11 z a^{-1} +11 z a^{-3} +2 z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2-2 a z^{-1} -4 a^{-1} z^{-1} -3 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-2-10123456χ
14        11
12       1 -1
10      21 1
8     21  -1
6    22   0
4   22    0
2  22     0
0 14      3
-2         0
-41        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=0 }[/math] [math]\displaystyle{ i=2 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n5.gif

L10n5

L10n7.gif

L10n7