L10n32
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n32's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X7,16,8,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X9,14,10,15 X15,8,16,9 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -3, 8, -7, 6, -5, -2, 10, 7, -8, 3, -4, 5, -6, 4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | 0 (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+q^{5/2}-q^{3/2}-\frac{1}{\sqrt{q}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z+a^5 z^{-1} -a^3 z^3-3 a^3 z-2 a^3 z^{-1} -z a^{-3} - a^{-3} z^{-1} +z^3 a^{-1} +a z^{-1} +3 z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^4 z^8-a^2 z^8-a^5 z^7-2 a^3 z^7-a z^7+6 a^4 z^6+7 a^2 z^6-z^6 a^{-2} +6 a^5 z^5+13 a^3 z^5+7 a z^5-z^5 a^{-1} -z^5 a^{-3} -10 a^4 z^4-14 a^2 z^4+4 z^4 a^{-2} -10 a^5 z^3-23 a^3 z^3-12 a z^3+5 z^3 a^{-1} +4 z^3 a^{-3} +6 a^4 z^2+11 a^2 z^2-2 z^2 a^{-2} +3 z^2+5 a^5 z+13 a^3 z+6 a z-5 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



