L11a129
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a129's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X18,10,19,9 X16,12,17,11 X12,16,13,15 X10,18,11,17 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 8, -9, 3, -6, 4, -5, 11, -2, 5, -4, 6, -3, 7, -8, 9, -7} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 t(1) t(2)^3-3 t(2)^3-6 t(1) t(2)^2+6 t(2)^2+6 t(1) t(2)-6 t(2)-3 t(1)+2}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{5/2}+3 q^{3/2}-5 \sqrt{q}+\frac{7}{\sqrt{q}}-\frac{9}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{11}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{7}{q^{11/2}}+\frac{4}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^9 z^{-1} +3 z a^7+3 a^7 z^{-1} -3 z^3 a^5-5 z a^5-2 a^5 z^{-1} +z^5 a^3+z^3 a^3+z^5 a+2 z^3 a+z a-z^3 a^{-1} -z a^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}+2 z^2 a^{10}-a^{10}-2 z^5 a^9+3 z^3 a^9-2 z a^9+a^9 z^{-1} -2 z^6 a^8-z^4 a^8+5 z^2 a^8-3 a^8-2 z^7 a^7-2 z^5 a^7+7 z^3 a^7-7 z a^7+3 a^7 z^{-1} -2 z^8 a^6+z^4 a^6+3 z^2 a^6-3 a^6-2 z^9 a^5+3 z^7 a^5-4 z^5 a^5+7 z^3 a^5-5 z a^5+2 a^5 z^{-1} -z^{10} a^4-z^8 a^4+8 z^6 a^4-7 z^4 a^4+2 z^2 a^4-5 z^9 a^3+17 z^7 a^3-16 z^5 a^3+6 z^3 a^3-z a^3-z^{10} a^2-2 z^8 a^2+19 z^6 a^2-23 z^4 a^2+7 z^2 a^2-3 z^9 a+11 z^7 a-8 z^5 a-z^3 a-3 z^8+13 z^6-15 z^4+5 z^2-z^7 a^{-1} +4 z^5 a^{-1} -4 z^3 a^{-1} +z a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



