L11n316
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n316's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X7,17,8,16 X20,10,21,9 X18,12,19,11 X22,20,11,19 X15,9,16,8 X10,22,5,21 X17,14,18,15 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -3, 7, 4, -8}, {5, -2, 11, 9, -7, 3, -9, -5, 6, -4, 8, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^2 w-u v^2+u v w^2-3 u v w+2 u v-u w^2+u w-v^2 w+v^2-2 v w^2+3 v w-v+w^2-2 w}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^9-3 q^8+5 q^7-6 q^6+8 q^5-7 q^4+7 q^3-4 q^2+3 q }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^{-8} -z^4 a^{-6} + a^{-6} z^{-2} +2 a^{-6} -2 z^4 a^{-4} -5 z^2 a^{-4} -2 a^{-4} z^{-2} -6 a^{-4} +3 z^2 a^{-2} + a^{-2} z^{-2} +4 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^9 a^{-5} +z^9 a^{-7} +z^8 a^{-4} +4 z^8 a^{-6} +3 z^8 a^{-8} -2 z^7 a^{-5} +z^7 a^{-7} +3 z^7 a^{-9} -z^6 a^{-4} -11 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} +3 z^5 a^{-3} +5 z^5 a^{-5} -8 z^5 a^{-7} -10 z^5 a^{-9} -z^4 a^{-4} +8 z^4 a^{-6} +6 z^4 a^{-8} -3 z^4 a^{-10} -4 z^3 a^{-3} -8 z^3 a^{-5} +3 z^3 a^{-7} +7 z^3 a^{-9} +5 z^2 a^{-2} +10 z^2 a^{-4} -3 z^2 a^{-8} +2 z^2 a^{-10} +6 z a^{-3} +6 z a^{-5} -5 a^{-2} -8 a^{-4} -3 a^{-6} + a^{-8} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



