L10a33
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a33's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,8,17,7 X18,10,19,9 X20,13,5,14 X8,18,9,17 X14,19,15,20 X10,16,11,15 X2536 X4,11,1,12 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -6, 4, -8, 10, -2, 5, -7, 8, -3, 6, -4, 7, -5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u v^4-4 u v^3+4 u v^2-4 u v+u+v^5-4 v^4+4 v^3-4 v^2+2 v}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+\frac{2}{q^{9/2}}+3 q^{7/2}-\frac{5}{q^{7/2}}-6 q^{5/2}+\frac{6}{q^{5/2}}+8 q^{3/2}-\frac{9}{q^{3/2}}-\frac{1}{q^{11/2}}-9 \sqrt{q}+\frac{10}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^5 z+2 a^5 z^{-1} -3 a^3 z^3-z^3 a^{-3} -8 a^3 z-4 a^3 z^{-1} -z a^{-3} +2 a z^5+z^5 a^{-1} +7 a z^3+z^3 a^{-1} +8 a z+3 a z^{-1} -2 z a^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^9-a z^9-2 a^4 z^8-6 a^2 z^8-4 z^8-a^5 z^7-2 a^3 z^7-8 a z^7-7 z^7 a^{-1} +8 a^4 z^6+18 a^2 z^6-8 z^6 a^{-2} +2 z^6+5 a^5 z^5+21 a^3 z^5+33 a z^5+11 z^5 a^{-1} -6 z^5 a^{-3} -8 a^4 z^4-10 a^2 z^4+12 z^4 a^{-2} -3 z^4 a^{-4} +13 z^4-9 a^5 z^3-33 a^3 z^3-33 a z^3-3 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} -a^4 z^2-4 a^2 z^2-6 z^2 a^{-2} -9 z^2+7 a^5 z+17 a^3 z+14 a z+2 z a^{-1} -2 z a^{-3} +2 a^4+3 a^2+ a^{-2} +3-2 a^5 z^{-1} -4 a^3 z^{-1} -3 a z^{-1} - a^{-1} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



