L10a80
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
Link Presentations
[edit Notes on L10a80's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,10,19,9 X20,13,7,14 X14,19,15,20 X10,16,11,15 X16,6,17,5 X2738 X4,11,5,12 X6,18,1,17 | 
| Gauss code | {1, -8, 2, -9, 7, -10}, {8, -1, 3, -6, 9, -2, 4, -5, 6, -7, 10, -3, 5, -4} | 
| A Braid Representative | |||||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 u^2 v^3-4 u^2 v^2+3 u^2 v-u^2+u v^4-4 u v^3+5 u v^2-4 u v+u-v^4+3 v^3-4 v^2+2 v}{u v^2}} (db) | 
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+3 q^{7/2}-6 q^{5/2}+9 q^{3/2}-11 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{11}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{1}{q^{11/2}}} (db) | 
| Signature | 1 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



