L10a80
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a80's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,10,19,9 X20,13,7,14 X14,19,15,20 X10,16,11,15 X16,6,17,5 X2738 X4,11,5,12 X6,18,1,17 |
| Gauss code | {1, -8, 2, -9, 7, -10}, {8, -1, 3, -6, 9, -2, 4, -5, 6, -7, 10, -3, 5, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 u^2 v^3-4 u^2 v^2+3 u^2 v-u^2+u v^4-4 u v^3+5 u v^2-4 u v+u-v^4+3 v^3-4 v^2+2 v}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{9/2}+3 q^{7/2}-6 q^{5/2}+9 q^{3/2}-11 \sqrt{q}+\frac{11}{\sqrt{q}}-\frac{11}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z+a^5 z^{-1} -3 a^3 z^3-z^3 a^{-3} -6 a^3 z-2 a^3 z^{-1} -z a^{-3} +2 a z^5+z^5 a^{-1} +6 a z^3+z^3 a^{-1} +6 a z+2 a z^{-1} -z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^3 z^9-2 a z^9-3 a^4 z^8-10 a^2 z^8-7 z^8-a^5 z^7+a^3 z^7-8 a z^7-10 z^7 a^{-1} +12 a^4 z^6+34 a^2 z^6-9 z^6 a^{-2} +13 z^6+4 a^5 z^5+19 a^3 z^5+42 a z^5+21 z^5 a^{-1} -6 z^5 a^{-3} -14 a^4 z^4-30 a^2 z^4+13 z^4 a^{-2} -3 z^4 a^{-4} -6 a^5 z^3-32 a^3 z^3-44 a z^3-13 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +4 a^4 z^2+7 a^2 z^2-5 z^2 a^{-2} -2 z^2+4 a^5 z+15 a^3 z+17 a z+5 z a^{-1} -z a^{-3} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



