L11n178
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n178's Link Presentations]
| Planar diagram presentation | X8192 X18,9,19,10 X13,21,14,20 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,22,16,7 X11,4,12,5 X19,13,20,12 X21,1,22,6 X2,18,3,17 |
| Gauss code | {1, -11, -4, 8, -5, 10}, {-6, -1, 2, 4, -8, 9, -3, 5, -7, 6, 11, -2, -9, 3, -10, 7} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\left(u v^2-u v+u+v-1\right) \left(u v^2-u v-v^2+v-1\right)}{u v^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{3/2}+3 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{9}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^7-a^5 z^5+5 a^3 z^5-a z^5-3 a^5 z^3+8 a^3 z^3-3 a z^3-2 a^5 z+4 a^3 z-3 a z+a^3 z^{-1} -a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^5 z^9-a^3 z^9-3 a^6 z^8-4 a^4 z^8-a^2 z^8-3 a^7 z^7-2 a^5 z^7+a^3 z^7-a^8 z^6+8 a^6 z^6+8 a^4 z^6-a^2 z^6+10 a^7 z^5+10 a^5 z^5-6 a^3 z^5-6 a z^5+3 a^8 z^4-3 a^6 z^4-3 a^4 z^4-3 z^4-8 a^7 z^3-4 a^5 z^3+12 a^3 z^3+7 a z^3-z^3 a^{-1} -2 a^8 z^2-a^6 z^2+a^4 z^2+a^2 z^2+z^2+a^7 z-a^5 z-6 a^3 z-4 a z-a^2+a^3 z^{-1} +a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



