L11a311
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a311's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X22,12,9,11 X2,9,3,10 X20,18,21,17 X18,5,19,6 X4,19,5,20 X14,7,15,8 X16,13,17,14 X8,15,1,16 X6,22,7,21 |
| Gauss code | {1, -4, 2, -7, 6, -11, 8, -10}, {4, -1, 3, -2, 9, -8, 10, -9, 5, -6, 7, -5, 11, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^3 v^3-3 u^3 v^2+3 u^3 v-u^3-3 u^2 v^3+10 u^2 v^2-11 u^2 v+3 u^2+3 u v^3-11 u v^2+10 u v-3 u-v^3+3 v^2-3 v+1}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{14}{q^{9/2}}-q^{7/2}+\frac{19}{q^{7/2}}+4 q^{5/2}-\frac{23}{q^{5/2}}-9 q^{3/2}+\frac{22}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{4}{q^{13/2}}+\frac{8}{q^{11/2}}+15 \sqrt{q}-\frac{20}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 (-z)+3 a^5 z^3+4 a^5 z+a^5 z^{-1} -3 a^3 z^5-8 a^3 z^3-8 a^3 z-a^3 z^{-1} +a z^7+4 a z^5-z^5 a^{-1} +8 a z^3-2 z^3 a^{-1} +5 a z-2 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^4 z^{10}-a^2 z^{10}-4 a^5 z^9-9 a^3 z^9-5 a z^9-6 a^6 z^8-17 a^4 z^8-20 a^2 z^8-9 z^8-4 a^7 z^7-5 a^5 z^7-3 a^3 z^7-10 a z^7-8 z^7 a^{-1} -a^8 z^6+12 a^6 z^6+41 a^4 z^6+42 a^2 z^6-4 z^6 a^{-2} +10 z^6+10 a^7 z^5+30 a^5 z^5+42 a^3 z^5+35 a z^5+12 z^5 a^{-1} -z^5 a^{-3} +2 a^8 z^4-6 a^6 z^4-27 a^4 z^4-26 a^2 z^4+5 z^4 a^{-2} -2 z^4-8 a^7 z^3-29 a^5 z^3-41 a^3 z^3-29 a z^3-8 z^3 a^{-1} +z^3 a^{-3} -a^8 z^2+4 a^4 z^2+5 a^2 z^2-2 z^2 a^{-2} +2 a^7 z+10 a^5 z+13 a^3 z+8 a z+3 z a^{-1} +a^4-a^5 z^{-1} -a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



