L11n44

From Knot Atlas
Revision as of 02:47, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n43.gif

L11n43

L11n45.gif

L11n45

L11n44.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n44 at Knotilus!


Link Presentations

[edit Notes on L11n44's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,14,6,15 X3849 X9,18,10,19 X11,20,12,21 X13,22,14,5 X19,10,20,11 X21,12,22,13 X15,2,16,3
Gauss code {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -7, 10, -8, 4, -11, -2, 3, 6, -9, 7, -10, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L11n44 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -9 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-8         11
-10         11
-12       1  1
-14     1    1
-16     21   1
-18   1      1
-20   11     0
-22 11       0
-24 11       0
-261         -1
-281         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n43.gif

L11n43

L11n45.gif

L11n45