L11n183
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n183's Link Presentations]
| Planar diagram presentation | X8192 X20,9,21,10 X21,1,22,6 X7,18,8,19 X3,10,4,11 X15,12,16,13 X5,14,6,15 X13,4,14,5 X11,16,12,17 X17,22,18,7 X2,20,3,19 |
| Gauss code | {1, -11, -5, 8, -7, 3}, {-4, -1, 2, 5, -9, 6, -8, 7, -6, 9, -10, 4, 11, -2, -3, 10} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(2)^2 t(1)^2-3 t(2) t(1)^2+t(1)^2-4 t(2)^2 t(1)+7 t(2) t(1)-4 t(1)+t(2)^2-3 t(2)+2}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{9}{q^{11/2}}+\frac{9}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{5}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)-a^9 z+a^7 z^5+2 a^7 z^3+a^7 z-a^7 z^{-1} +a^5 z^5+2 a^5 z^3+3 a^5 z+3 a^5 z^{-1} -2 a^3 z^3-4 a^3 z-2 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+3 z^4 a^{12}-2 z^2 a^{12}-3 z^7 a^{11}+10 z^5 a^{11}-8 z^3 a^{11}+z a^{11}-3 z^8 a^{10}+8 z^6 a^{10}-4 z^4 a^{10}+z^2 a^{10}-z^9 a^9-3 z^7 a^9+14 z^5 a^9-9 z^3 a^9+z a^9-5 z^8 a^8+12 z^6 a^8-8 z^4 a^8+2 z^2 a^8+a^8-z^9 a^7-2 z^7 a^7+7 z^5 a^7-6 z^3 a^7+2 z a^7-a^7 z^{-1} -2 z^8 a^6+2 z^6 a^6-z^4 a^6-4 z^2 a^6+3 a^6-2 z^7 a^5+3 z^5 a^5-8 z^3 a^5+7 z a^5-3 a^5 z^{-1} -z^6 a^4-3 z^2 a^4+3 a^4-3 z^3 a^3+5 z a^3-2 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



