L11n129
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n129's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X22,10,7,9 X2738 X4,15,5,16 X5,13,6,12 X16,12,17,11 X17,6,18,1 X19,14,20,15 X13,20,14,21 X21,19,22,18 |
| Gauss code | {1, -4, 2, -5, -6, 8}, {4, -1, 3, -2, 7, 6, -10, 9, 5, -7, -8, 11, -9, 10, -11, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^2-2 u^2 v+u^2-3 u v^2+7 u v-3 u+v^2-2 v+1}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{2}{q^{7/2}}+4 q^{5/2}-\frac{5}{q^{5/2}}-6 q^{3/2}+\frac{6}{q^{3/2}}+7 \sqrt{q}-\frac{7}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^{-1} +z^3 a^{-3} -3 a^3 z-2 a^3 z^{-1} +z a^{-3} -z^5 a^{-1} +3 a z^3-3 z^3 a^{-1} +5 a z+2 a z^{-1} -4 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a z^9-z^9 a^{-1} -2 a^2 z^8-3 z^8 a^{-2} -5 z^8-a^3 z^7-2 z^7 a^{-1} -3 z^7 a^{-3} +8 a^2 z^6+10 z^6 a^{-2} -z^6 a^{-4} +19 z^6+3 a^3 z^5+10 a z^5+18 z^5 a^{-1} +11 z^5 a^{-3} -2 a^4 z^4-15 a^2 z^4-7 z^4 a^{-2} +3 z^4 a^{-4} -23 z^4-a^5 z^3-9 a^3 z^3-21 a z^3-22 z^3 a^{-1} -9 z^3 a^{-3} +2 a^4 z^2+8 a^2 z^2+2 z^2 a^{-2} -z^2 a^{-4} +9 z^2+2 a^5 z+8 a^3 z+12 a z+8 z a^{-1} +2 z a^{-3} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



