L11a536
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a536's Link Presentations]
| Planar diagram presentation | X6172 X2536 X18,12,19,11 X10,3,11,4 X4,9,1,10 X16,7,17,8 X8,15,5,16 X22,18,15,17 X12,22,13,21 X20,14,21,13 X14,20,9,19 |
| Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -9, 10, -11}, {7, -6, 8, -3, 11, -10, 9, -8} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v w^2 x-u v w^2+u v w x^2-3 u v w x+2 u v w-u v x^2+2 u v x-2 u w^2 x+u w^2-2 u w x^2+4 u w x-2 u w+2 u x^2-2 u x-2 v w^2 x+2 v w^2-2 v w x^2+4 v w x-2 v w+v x^2-2 v x+2 w^2 x-w^2+2 w x^2-3 w x+w-x^2+x}{\sqrt{u} \sqrt{v} w x} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-4 q^{7/2}+7 q^{5/2}-12 q^{3/2}+14 \sqrt{q}-\frac{18}{\sqrt{q}}+\frac{15}{q^{3/2}}-\frac{15}{q^{5/2}}+\frac{9}{q^{7/2}}-\frac{6}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 z^{-1} +a^5 z^{-3} -3 a^5 z-a^5 z^{-1} +3 a^3 z^3-3 a^3 z^{-3} +z^3 a^{-3} -4 a^3 z^{-1} -a z^5-z^5 a^{-1} +2 a z^3+3 a z^{-3} -z^3 a^{-1} - a^{-1} z^{-3} +6 a z+7 a z^{-1} -3 z a^{-1} -3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^5-3 a^7 z^3+3 a^7 z-a^7 z^{-1} +2 a^6 z^6-3 a^6 z^4+a^6+3 a^5 z^7-3 a^5 z^5+a^5 z^3-a^5 z^{-3} -3 a^5 z+3 a^5 z^{-1} +3 a^4 z^8+a^4 z^6+z^6 a^{-4} -10 a^4 z^4-2 z^4 a^{-4} +16 a^4 z^2+3 a^4 z^{-2} -11 a^4+2 a^3 z^9+6 a^3 z^7+4 z^7 a^{-3} -19 a^3 z^5-11 z^5 a^{-3} +26 a^3 z^3+7 z^3 a^{-3} -3 a^3 z^{-3} -21 a^3 z+12 a^3 z^{-1} +a^2 z^{10}+5 a^2 z^8+6 z^8 a^{-2} -3 a^2 z^6-16 z^6 a^{-2} -17 a^2 z^4+10 z^4 a^{-2} +33 a^2 z^2+6 a^2 z^{-2} -24 a^2+6 a z^9+4 z^9 a^{-1} -5 a z^7-4 z^7 a^{-1} -13 a z^5-9 z^5 a^{-1} +29 a z^3+14 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -28 a z-13 z a^{-1} +14 a z^{-1} +6 a^{-1} z^{-1} +z^{10}+8 z^8-19 z^6+2 z^4+17 z^2+3 z^{-2} -13 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



