L11a224
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a224's Link Presentations]
| Planar diagram presentation | X8192 X16,6,17,5 X18,10,19,9 X10,20,11,19 X2,11,3,12 X12,3,13,4 X4758 X20,14,21,13 X22,16,7,15 X6,18,1,17 X14,22,15,21 |
| Gauss code | {1, -5, 6, -7, 2, -10}, {7, -1, 3, -4, 5, -6, 8, -11, 9, -2, 10, -3, 4, -8, 11, -9} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^6-2 u^2 v^5+3 u^2 v^4-3 u^2 v^3+2 u^2 v^2-u^2 v-u v^6+4 u v^5-6 u v^4+7 u v^3-6 u v^2+4 u v-u-v^5+2 v^4-3 v^3+3 v^2-2 v+1}{u v^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{17/2}-3 q^{15/2}+7 q^{13/2}-11 q^{11/2}+15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-15 q^{3/2}+10 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^7 a^{-5} +5 z^5 a^{-5} +9 z^3 a^{-5} +7 z a^{-5} +2 a^{-5} z^{-1} -z^9 a^{-3} -7 z^7 a^{-3} -19 z^5 a^{-3} -25 z^3 a^{-3} -16 z a^{-3} -5 a^{-3} z^{-1} +z^7 a^{-1} +5 z^5 a^{-1} +9 z^3 a^{-1} +8 z a^{-1} +3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-10} -z^2 a^{-10} +3 z^5 a^{-9} -2 z^3 a^{-9} +6 z^6 a^{-8} -7 z^4 a^{-8} +5 z^2 a^{-8} - a^{-8} +8 z^7 a^{-7} -11 z^5 a^{-7} +7 z^3 a^{-7} +8 z^8 a^{-6} -12 z^6 a^{-6} +6 z^4 a^{-6} +6 z^9 a^{-5} -10 z^7 a^{-5} +10 z^5 a^{-5} -15 z^3 a^{-5} +9 z a^{-5} -2 a^{-5} z^{-1} +2 z^{10} a^{-4} +6 z^8 a^{-4} -26 z^6 a^{-4} +27 z^4 a^{-4} -18 z^2 a^{-4} +5 a^{-4} +10 z^9 a^{-3} -32 z^7 a^{-3} +40 z^5 a^{-3} -37 z^3 a^{-3} +20 z a^{-3} -5 a^{-3} z^{-1} +2 z^{10} a^{-2} +z^8 a^{-2} -19 z^6 a^{-2} +24 z^4 a^{-2} -14 z^2 a^{-2} +5 a^{-2} +4 z^9 a^{-1} +a z^7-13 z^7 a^{-1} -4 a z^5+12 z^5 a^{-1} +5 a z^3-8 z^3 a^{-1} -2 a z+9 z a^{-1} -3 a^{-1} z^{-1} +3 z^8-11 z^6+11 z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



