L11a99
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a99's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X22,11,5,12 X4,21,1,22 X18,16,19,15 X16,8,17,7 X8,18,9,17 X20,14,21,13 X14,20,15,19 |
| Gauss code | {1, -2, 3, -6}, {4, -1, 8, -9, 2, -4, 5, -3, 10, -11, 7, -8, 9, -7, 11, -10, 6, -5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{4 t(1) t(2)^3-3 t(2)^3-10 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-10 t(2)-3 t(1)+4}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{6}{q^{9/2}}-4 q^{7/2}+\frac{10}{q^{7/2}}+8 q^{5/2}-\frac{15}{q^{5/2}}-11 q^{3/2}+\frac{16}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+15 \sqrt{q}-\frac{18}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^5+z a^5-z^5 a^3-z^3 a^3+2 a^3 z^{-1} -2 z^5 a-4 z^3 a-5 z a-3 a z^{-1} -z^5 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} +z^3 a^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^2 z^{10}-2 z^{10}-4 a^3 z^9-10 a z^9-6 z^9 a^{-1} -4 a^4 z^8-2 a^2 z^8-7 z^8 a^{-2} -5 z^8-4 a^5 z^7+6 a^3 z^7+30 a z^7+16 z^7 a^{-1} -4 z^7 a^{-3} -3 a^6 z^6+2 a^4 z^6+10 a^2 z^6+21 z^6 a^{-2} -z^6 a^{-4} +27 z^6-a^7 z^5+5 a^5 z^5-9 a^3 z^5-38 a z^5-13 z^5 a^{-1} +10 z^5 a^{-3} +6 a^6 z^4+5 a^4 z^4-14 a^2 z^4-16 z^4 a^{-2} +2 z^4 a^{-4} -31 z^4+2 a^7 z^3+9 a^3 z^3+20 a z^3+6 z^3 a^{-1} -3 z^3 a^{-3} -3 a^6 z^2-3 a^4 z^2+7 a^2 z^2+4 z^2 a^{-2} +11 z^2-a^7 z-4 a^3 z-7 a z-2 z a^{-1} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



