L11a140

From Knot Atlas
Revision as of 02:50, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a139.gif

L11a139

L11a141.gif

L11a141

L11a140.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a140 at Knotilus!


Link Presentations

[edit Notes on L11a140's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X22,10,7,9 X2738 X16,11,17,12 X12,5,13,6 X4,18,5,17 X14,19,15,20 X20,13,21,14 X18,22,19,21 X6,15,1,16
Gauss code {1, -4, 2, -7, 6, -11}, {4, -1, 3, -2, 5, -6, 9, -8, 11, -5, 7, -10, 8, -9, 10, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a140 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{\left(t(1) t(2)^2-t(2)^2-3 t(1) t(2)+2 t(2)+t(1)-1\right) \left(t(1) t(2)^2-t(2)^2-2 t(1) t(2)+3 t(2)+t(1)-1\right)}{t(1) t(2)^2} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^{7/2}+5 q^{5/2}-11 q^{3/2}+17 \sqrt{q}-\frac{24}{\sqrt{q}}+\frac{26}{q^{3/2}}-\frac{26}{q^{5/2}}+\frac{22}{q^{7/2}}-\frac{16}{q^{9/2}}+\frac{9}{q^{11/2}}-\frac{4}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z a^7+3 z^3 a^5+3 z a^5-3 z^5 a^3-6 z^3 a^3-3 z a^3+a^3 z^{-1} +z^7 a+3 z^5 a+4 z^3 a-a z^{-1} -z^5 a^{-1} -z^3 a^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^8 z^6-2 a^8 z^4+a^8 z^2+4 a^7 z^7-9 a^7 z^5+7 a^7 z^3-2 a^7 z+7 a^6 z^8-14 a^6 z^6+9 a^6 z^4-2 a^6 z^2+6 a^5 z^9-a^5 z^7-20 a^5 z^5+21 a^5 z^3-6 a^5 z+2 a^4 z^{10}+18 a^4 z^8-47 a^4 z^6+34 a^4 z^4-8 a^4 z^2+14 a^3 z^9-9 a^3 z^7-29 a^3 z^5+z^5 a^{-3} +29 a^3 z^3-5 a^3 z-a^3 z^{-1} +2 a^2 z^{10}+24 a^2 z^8-53 a^2 z^6+5 z^6 a^{-2} +31 a^2 z^4-4 z^4 a^{-2} -6 a^2 z^2+a^2+8 a z^9+7 a z^7+11 z^7 a^{-1} -34 a z^5-15 z^5 a^{-1} +21 a z^3+6 z^3 a^{-1} -a z-a z^{-1} +13 z^8-16 z^6+4 z^4-z^2 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
8           11
6          4 -4
4         71 6
2        104  -6
0       147   7
-2      1311    -2
-4     1313     0
-6    1014      4
-8   612       -6
-10  310        7
-12 16         -5
-14 3          3
-161           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{13} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{13} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{14} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a139.gif

L11a139

L11a141.gif

L11a141