L11n310
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n310's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X13,19,14,18 X17,11,18,22 X7,17,8,16 X21,8,22,9 X9,20,10,21 X15,5,16,10 X19,15,20,14 X2536 X11,1,12,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -5, 6, -7, 8}, {-11, 2, -3, 9, -8, 5, -4, 3, -9, 7, -6, 4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(2) t(3)^4+t(3)^4+t(1) t(2)^2 t(3)^3+t(1) t(3)^3-3 t(1) t(2) t(3)^3+3 t(2) t(3)^3-2 t(3)^3-2 t(1) t(2)^2 t(3)^2+t(2)^2 t(3)^2-t(1) t(3)^2+4 t(1) t(2) t(3)^2-4 t(2) t(3)^2+2 t(3)^2+2 t(1) t(2)^2 t(3)-t(2)^2 t(3)-3 t(1) t(2) t(3)+3 t(2) t(3)-t(3)-t(1) t(2)^2+t(1) t(2)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-7 q^6+10 q^5-12 q^4+14 q^3-11 q^2+10 q-5+3 q^{-1} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} z^{-2} -3 a^{-6} +z^6 a^{-4} +4 z^4 a^{-4} +10 z^2 a^{-4} +4 a^{-4} z^{-2} +11 a^{-4} -4 z^4 a^{-2} -12 z^2 a^{-2} -5 a^{-2} z^{-2} -13 a^{-2} +3 z^2+2 z^{-2} +5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} -2 z^3 a^{-9} +z a^{-9} +3 z^6 a^{-8} -5 z^4 a^{-8} +z^2 a^{-8} +5 z^7 a^{-7} -9 z^5 a^{-7} +5 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +5 z^8 a^{-6} -9 z^6 a^{-6} +8 z^4 a^{-6} -8 z^2 a^{-6} - a^{-6} z^{-2} +5 a^{-6} +2 z^9 a^{-5} +5 z^7 a^{-5} -22 z^5 a^{-5} +32 z^3 a^{-5} -21 z a^{-5} +5 a^{-5} z^{-1} +10 z^8 a^{-4} -29 z^6 a^{-4} +44 z^4 a^{-4} -36 z^2 a^{-4} -4 a^{-4} z^{-2} +18 a^{-4} +2 z^9 a^{-3} +3 z^7 a^{-3} -18 z^5 a^{-3} +35 z^3 a^{-3} -29 z a^{-3} +9 a^{-3} z^{-1} +5 z^8 a^{-2} -17 z^6 a^{-2} +37 z^4 a^{-2} -41 z^2 a^{-2} -5 a^{-2} z^{-2} +21 a^{-2} +3 z^7 a^{-1} -6 z^5 a^{-1} +10 z^3 a^{-1} -13 z a^{-1} +5 a^{-1} z^{-1} +6 z^4-14 z^2-2 z^{-2} +9 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



