L10n72
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n72's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X7,17,8,16 X9,11,10,20 X11,18,12,19 X15,9,16,8 X19,5,20,10 X17,14,18,15 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -3, 6, -4, 7}, {-5, -2, 10, 8, -6, 3, -8, 5, -7, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2+u v w^2-u v w-u w^2+u w-v^2 w+v^2+v w-v-w^2}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^6+2 q^3-q^2+3 q-2+2 q^{-1} -2 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{-6} z^{-2} + a^{-6} -z^2 a^{-4} -2 a^{-4} z^{-2} -4 a^{-4} +a^2 z^2+2 z^2 a^{-2} + a^{-2} z^{-2} +a^2+4 a^{-2} -z^4-3 z^2-2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-2} +z^8+2 a z^7+3 z^7 a^{-1} +z^7 a^{-3} +a^2 z^6-5 z^6 a^{-2} +z^6 a^{-6} -3 z^6-9 a z^5-15 z^5 a^{-1} -6 z^5 a^{-3} -4 a^2 z^4+6 z^4 a^{-2} -2 z^4 a^{-4} -6 z^4 a^{-6} -2 z^4+9 a z^3+19 z^3 a^{-1} +8 z^3 a^{-3} -2 z^3 a^{-5} +3 a^2 z^2-z^2 a^{-2} +6 z^2 a^{-4} +9 z^2 a^{-6} +5 z^2-2 a z-6 z a^{-1} +4 z a^{-5} -a^2-3 a^{-2} -6 a^{-4} -4 a^{-6} -1-2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



