L11a258
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a258's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X14,5,15,6 X12,3,13,4 X4,13,5,14 X22,20,9,19 X18,7,19,8 X6,17,7,18 X16,22,17,21 X20,16,21,15 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -10, 3, -4, 2, -7, 6, -11}, {10, -1, 11, -3, 4, -2, 9, -8, 7, -6, 5, -9, 8, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^3 v^4-2 u^3 v^3+2 u^3 v^2+u^2 v^5-3 u^2 v^4+6 u^2 v^3-5 u^2 v^2+2 u^2 v+2 u v^4-5 u v^3+6 u v^2-3 u v+u+2 v^3-2 v^2+v}{u^{3/2} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{12}{q^{5/2}}-\frac{14}{q^{7/2}}+\frac{14}{q^{9/2}}-\frac{12}{q^{11/2}}+\frac{8}{q^{13/2}}-\frac{5}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^7+4 z^3 a^7+5 z a^7+2 a^7 z^{-1} -z^7 a^5-5 z^5 a^5-10 z^3 a^5-9 z a^5-3 a^5 z^{-1} -z^7 a^3-4 z^5 a^3-5 z^3 a^3-2 z a^3+a^3 z^{-1} +z^5 a+3 z^3 a+2 z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+3 z^3 a^{11}-2 z a^{11}-2 z^6 a^{10}+4 z^4 a^{10}-z^2 a^{10}-3 z^7 a^9+6 z^5 a^9-5 z^3 a^9+3 z a^9-3 z^8 a^8+4 z^6 a^8-2 z^4 a^8-3 z^9 a^7+7 z^7 a^7-14 z^5 a^7+13 z^3 a^7-8 z a^7+2 a^7 z^{-1} -z^{10} a^6-4 z^8 a^6+15 z^6 a^6-23 z^4 a^6+12 z^2 a^6-3 a^6-6 z^9 a^5+17 z^7 a^5-26 z^5 a^5+24 z^3 a^5-14 z a^5+3 a^5 z^{-1} -z^{10} a^4-5 z^8 a^4+20 z^6 a^4-25 z^4 a^4+15 z^2 a^4-3 a^4-3 z^9 a^3+4 z^7 a^3+4 z^5 a^3-4 z^3 a^3+z a^3+a^3 z^{-1} -4 z^8 a^2+10 z^6 a^2-5 z^4 a^2+2 z^2 a^2-a^2-3 z^7 a+9 z^5 a-7 z^3 a+2 z a-z^6+3 z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



