L11n18
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n18's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X8493 X9,16,10,17 X11,20,12,21 X17,22,18,5 X21,18,22,19 X19,10,20,11 X2,14,3,13 |
| Gauss code | {1, -11, 5, -3}, {-4, -1, 2, -5, -6, 10, -7, 4, 11, -2, 3, 6, -8, 9, -10, 7, -9, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) \left(2 v^2-3 v+2\right)}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{8}{q^{9/2}}-\frac{10}{q^{11/2}}+\frac{9}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{6}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{1}{q^{21/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)-a^9 z-a^9 z^{-1} +a^7 z^5+2 a^7 z^3+2 a^7 z+a^7 z^{-1} +a^5 z^5+2 a^5 z^3+3 a^5 z+2 a^5 z^{-1} -2 a^3 z^3-4 a^3 z-2 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+3 z^4 a^{12}-3 z^2 a^{12}+a^{12}-3 z^7 a^{11}+9 z^5 a^{11}-6 z^3 a^{11}+z a^{11}-3 z^8 a^{10}+6 z^6 a^{10}+3 z^4 a^{10}-5 z^2 a^{10}-z^9 a^9-4 z^7 a^9+17 z^5 a^9-12 z^3 a^9+2 z a^9+a^9 z^{-1} -5 z^8 a^8+10 z^6 a^8-3 z^4 a^8+2 z^2 a^8-3 a^8-z^9 a^7-3 z^7 a^7+11 z^5 a^7-11 z^3 a^7+2 z a^7+a^7 z^{-1} -2 z^8 a^6+2 z^6 a^6-3 z^4 a^6+z^2 a^6-2 z^7 a^5+3 z^5 a^5-8 z^3 a^5+6 z a^5-2 a^5 z^{-1} -z^6 a^4-3 z^2 a^4+3 a^4-3 z^3 a^3+5 z a^3-2 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



