L11a71
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a71's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,8,17,7 X18,10,19,9 X8,18,9,17 X22,20,5,19 X20,14,21,13 X14,22,15,21 X10,16,11,15 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -5, 4, -9, 11, -2, 7, -8, 9, -3, 5, -4, 6, -7, 8, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^5-4 u v^4+7 u v^3-8 u v^2+6 u v-3 u-3 v^5+6 v^4-8 v^3+7 v^2-4 v+1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 17 q^{9/2}-19 q^{7/2}+18 q^{5/2}-\frac{1}{q^{5/2}}-15 q^{3/2}+\frac{2}{q^{3/2}}+q^{17/2}-4 q^{15/2}+9 q^{13/2}-13 q^{11/2}+10 \sqrt{q}-\frac{7}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{-7} +z a^{-7} -2 z^5 a^{-5} -4 z^3 a^{-5} + a^{-5} z^{-1} +z^7 a^{-3} +3 z^5 a^{-3} +2 z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-6 z^3 a^{-1} +3 a z-5 z a^{-1} +2 a z^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-10} +4 z^5 a^{-9} -z^3 a^{-9} +9 z^6 a^{-8} -9 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +12 z^7 a^{-7} -16 z^5 a^{-7} +8 z^3 a^{-7} -2 z a^{-7} +10 z^8 a^{-6} -9 z^6 a^{-6} -5 z^4 a^{-6} +3 z^2 a^{-6} +5 z^9 a^{-5} +7 z^7 a^{-5} -32 z^5 a^{-5} +20 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +z^{10} a^{-4} +16 z^8 a^{-4} -46 z^6 a^{-4} +38 z^4 a^{-4} -15 z^2 a^{-4} +3 a^{-4} +8 z^9 a^{-3} -14 z^7 a^{-3} -3 z^5 a^{-3} +5 z^3 a^{-3} +3 z a^{-3} - a^{-3} z^{-1} +z^{10} a^{-2} +8 z^8 a^{-2} -34 z^6 a^{-2} +36 z^4 a^{-2} -10 z^2 a^{-2} +3 z^9 a^{-1} +a z^7-8 z^7 a^{-1} -5 a z^5+4 z^5 a^{-1} +9 a z^3+3 z^3 a^{-1} -7 a z-4 z a^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} +2 z^8-6 z^6+3 z^4+4 z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



