L10a17
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a17's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X16,8,17,7 X20,18,5,17 X18,14,19,13 X14,20,15,19 X12,10,13,9 X8,16,9,15 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 7, -2, 10, -7, 5, -6, 8, -3, 4, -5, 6, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(3 v^2-4 v+3\right)}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 13 q^{9/2}-13 q^{7/2}+9 q^{5/2}-6 q^{3/2}-q^{19/2}+4 q^{17/2}-7 q^{15/2}+11 q^{13/2}-13 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-9} +3 z^3 a^{-7} +4 z a^{-7} + a^{-7} z^{-1} -2 z^5 a^{-5} -5 z^3 a^{-5} -5 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} -z^3 a^{-3} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-11} -z^3 a^{-11} +4 z^6 a^{-10} -7 z^4 a^{-10} +3 z^2 a^{-10} +6 z^7 a^{-9} -10 z^5 a^{-9} +4 z^3 a^{-9} -2 z a^{-9} +4 z^8 a^{-8} +2 z^6 a^{-8} -17 z^4 a^{-8} +12 z^2 a^{-8} -2 a^{-8} +z^9 a^{-7} +12 z^7 a^{-7} -29 z^5 a^{-7} +23 z^3 a^{-7} -8 z a^{-7} + a^{-7} z^{-1} +7 z^8 a^{-6} -5 z^6 a^{-6} -10 z^4 a^{-6} +14 z^2 a^{-6} -5 a^{-6} +z^9 a^{-5} +9 z^7 a^{-5} -22 z^5 a^{-5} +21 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +3 z^8 a^{-4} -z^6 a^{-4} -3 z^4 a^{-4} +5 z^2 a^{-4} -3 a^{-4} +3 z^7 a^{-3} -3 z^5 a^{-3} +2 z^6 a^{-2} -3 z^4 a^{-2} + a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +3 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



