L10a77
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a77's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,5,17,6 X14,7,15,8 X18,11,19,12 X20,15,7,16 X12,17,13,18 X4,13,5,14 X6,19,1,20 |
| Gauss code | {1, -2, 3, -9, 4, -10}, {5, -1, 2, -3, 6, -8, 9, -5, 7, -4, 8, -6, 10, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{4 u^2 v^3-4 u^2 v^2+u^2 v+u v^4-5 u v^3+9 u v^2-5 u v+u+v^3-4 v^2+4 v}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{7}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{10}{q^{19/2}}-\frac{12}{q^{17/2}}+\frac{13}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{9}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{11} z^3+a^{11} z-a^{11} z^{-1} -a^9 z^5+5 a^9 z+3 a^9 z^{-1} -3 a^7 z^5-10 a^7 z^3-9 a^7 z-2 a^7 z^{-1} -a^5 z^5-2 a^5 z^3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z^5-2 a^{15} z^3+a^{15} z+3 a^{14} z^6-6 a^{14} z^4+3 a^{14} z^2+4 a^{13} z^7-5 a^{13} z^5-a^{13} z^3+a^{13} z+4 a^{12} z^8-5 a^{12} z^6+3 a^{12} z^4-3 a^{12} z^2-a^{12}+2 a^{11} z^9+2 a^{11} z^7-5 a^{11} z^5+a^{11} z^3+a^{11} z^{-1} +9 a^{10} z^8-20 a^{10} z^6+18 a^{10} z^4-2 a^{10} z^2-3 a^{10}+2 a^9 z^9+4 a^9 z^7-16 a^9 z^5+19 a^9 z^3-9 a^9 z+3 a^9 z^{-1} +5 a^8 z^8-9 a^8 z^6+4 a^8 z^4+4 a^8 z^2-3 a^8+6 a^7 z^7-16 a^7 z^5+17 a^7 z^3-9 a^7 z+2 a^7 z^{-1} +3 a^6 z^6-5 a^6 z^4+a^5 z^5-2 a^5 z^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



