L11n77
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n77's Link Presentations]
| Planar diagram presentation | X6172 X3,10,4,11 X7,20,8,21 X15,5,16,22 X21,17,22,16 X9,14,10,15 X13,19,14,18 X19,13,20,12 X17,8,18,9 X2536 X11,4,12,1 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -3, 9, -6, 2, -11, 8, -7, 6, -4, 5, -9, 7, -8, 3, -5, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^5-4 u v^4+7 u v^3-3 u v^2-3 v^3+7 v^2-4 v+1}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+3 q^{3/2}-6 \sqrt{q}+\frac{8}{\sqrt{q}}-\frac{10}{q^{3/2}}+\frac{10}{q^{5/2}}-\frac{9}{q^{7/2}}+\frac{7}{q^{9/2}}-\frac{5}{q^{11/2}}+\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+z^5 a^5+4 z^3 a^5+5 z a^5+2 a^5 z^{-1} -z^7 a^3-5 z^5 a^3-10 z^3 a^3-11 z a^3-4 a^3 z^{-1} +2 z^5 a+7 z^3 a+7 z a+3 a z^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^2+5 a^7 z^3-a^7 z+3 a^6 z^6-2 a^6 z^4+a^6+8 a^5 z^7-26 a^5 z^5+31 a^5 z^3-14 a^5 z+2 a^5 z^{-1} +7 a^4 z^8-22 a^4 z^6+22 a^4 z^4-12 a^4 z^2+2 a^4+2 a^3 z^9+6 a^3 z^7-42 a^3 z^5+53 a^3 z^3-26 a^3 z+4 a^3 z^{-1} +10 a^2 z^8-37 a^2 z^6+38 a^2 z^4-16 a^2 z^2+3 a^2+2 a z^9-a z^7+z^7 a^{-1} -20 a z^5-4 z^5 a^{-1} +33 a z^3+6 z^3 a^{-1} -17 a z-4 z a^{-1} +3 a z^{-1} + a^{-1} z^{-1} +3 z^8-12 z^6+14 z^4-5 z^2+1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



