L11a392
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a392's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,7,17,8 X8,15,5,16 X18,11,19,12 X22,17,9,18 X12,21,13,22 X20,13,21,14 X14,19,15,20 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -7, 8, -9, 4, -3, 6, -5, 9, -8, 7, -6} |
| A Braid Representative | |||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(3)^3+2 t(2) t(3)^3-2 t(3)^3-7 t(1) t(3)^2+4 t(1) t(2) t(3)^2-7 t(2) t(3)^2+5 t(3)^2+7 t(1) t(3)-5 t(1) t(2) t(3)+7 t(2) t(3)-4 t(3)-2 t(1)+2 t(1) t(2)-2 t(2)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-2} -4 q^{-3} +10 q^{-4} -13 q^{-5} +18 q^{-6} -18 q^{-7} +19 q^{-8} -14 q^{-9} +10 q^{-10} -6 q^{-11} +2 q^{-12} - q^{-13} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{14} z^{-2} +3 a^{12} z^{-2} +4 a^{12}-6 z^2 a^{10}-2 a^{10} z^{-2} -7 a^{10}+3 z^4 a^8+2 z^2 a^8-a^8 z^{-2} -a^8+4 z^4 a^6+7 z^2 a^6+a^6 z^{-2} +4 a^6+z^4 a^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{15}-5 z^5 a^{15}+9 z^3 a^{15}-7 z a^{15}+2 a^{15} z^{-1} +2 z^8 a^{14}-7 z^6 a^{14}+7 z^4 a^{14}-2 z^2 a^{14}-a^{14} z^{-2} +a^{14}+2 z^9 a^{13}-z^7 a^{13}-17 z^5 a^{13}+35 z^3 a^{13}-27 z a^{13}+8 a^{13} z^{-1} +z^{10} a^{12}+6 z^8 a^{12}-25 z^6 a^{12}+24 z^4 a^{12}-7 z^2 a^{12}-3 a^{12} z^{-2} +5 a^{12}+7 z^9 a^{11}-7 z^7 a^{11}-27 z^5 a^{11}+50 z^3 a^{11}-34 z a^{11}+10 a^{11} z^{-1} +z^{10} a^{10}+15 z^8 a^{10}-40 z^6 a^{10}+27 z^4 a^{10}-8 z^2 a^{10}-2 a^{10} z^{-2} +4 a^{10}+5 z^9 a^9+8 z^7 a^9-35 z^5 a^9+26 z^3 a^9-10 z a^9+2 a^9 z^{-1} +11 z^8 a^8-12 z^6 a^8-2 z^4 a^8+4 z^2 a^8+a^8 z^{-2} -3 a^8+13 z^7 a^7-16 z^5 a^7+2 z^3 a^7+4 z a^7-2 a^7 z^{-1} +10 z^6 a^6-11 z^4 a^6+7 z^2 a^6+a^6 z^{-2} -4 a^6+4 z^5 a^5+z^4 a^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



