L11n28
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n28's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X13,22,14,5 X21,14,22,15 X11,18,12,19 X9,20,10,21 X19,10,20,11 X2,16,3,15 |
| Gauss code | {1, -11, 5, -3}, {-4, -1, 2, -5, -9, 10, -8, 4, -6, 7, 11, -2, 3, 8, -10, 9, -7, 6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{6}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 (-z)-a^9 z^{-1} +a^7 z^3+3 a^7 z+a^7 z^{-1} -a^5 z^3+2 a^5 z^{-1} +a^3 z^5+2 a^3 z^3-a^3 z-2 a^3 z^{-1} -a z^3-a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^8-7 a^{10} z^6+15 a^{10} z^4-13 a^{10} z^2+4 a^{10}+a^9 z^9-7 a^9 z^7+13 a^9 z^5-7 a^9 z^3-a^9 z^{-1} +2 a^8 z^8-17 a^8 z^6+40 a^8 z^4-32 a^8 z^2+9 a^8+a^7 z^9-7 a^7 z^7+11 a^7 z^5+a^7 z^3-a^7 z-a^7 z^{-1} +2 a^6 z^8-13 a^6 z^6+28 a^6 z^4-18 a^6 z^2+4 a^6+3 a^5 z^7-10 a^5 z^5+12 a^5 z^3-5 a^5 z+2 a^5 z^{-1} +a^4 z^8-4 a^4 z^4+2 a^4 z^2-2 a^4+3 a^3 z^7-7 a^3 z^5+2 a^3 z^3-3 a^3 z+2 a^3 z^{-1} +3 a^2 z^6-7 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



