L11a95
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a95's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,12,15,11 X18,15,19,16 X16,9,17,10 X10,17,11,18 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 8, -9, 5, -6, 3, -2, 11, -3, 4, -5, 6, -4, 7, -8, 9, -7} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{19}{q^{9/2}}-\frac{20}{q^{7/2}}+\frac{16}{q^{5/2}}+q^{3/2}-\frac{14}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{12}{q^{13/2}}-\frac{16}{q^{11/2}}-4 \sqrt{q}+\frac{8}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^9+a^9 z^{-1} -3 z^3 a^7-7 z a^7-5 a^7 z^{-1} +3 z^5 a^5+10 z^3 a^5+14 z a^5+8 a^5 z^{-1} -z^7 a^3-4 z^5 a^3-8 z^3 a^3-9 z a^3-4 a^3 z^{-1} +z^5 a+2 z^3 a+z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-6 a^{10} z^4+5 a^{10} z^2-2 a^{10}+4 a^9 z^7-3 a^9 z^5-2 a^9 z^3+a^9 z+a^9 z^{-1} +4 a^8 z^8+3 a^8 z^6-18 a^8 z^4+22 a^8 z^2-9 a^8+3 a^7 z^9+6 a^7 z^7-17 a^7 z^5+16 a^7 z^3-9 a^7 z+5 a^7 z^{-1} +a^6 z^{10}+10 a^6 z^8-13 a^6 z^6-12 a^6 z^4+29 a^6 z^2-14 a^6+7 a^5 z^9-27 a^5 z^5+33 a^5 z^3-21 a^5 z+8 a^5 z^{-1} +a^4 z^{10}+12 a^4 z^8-26 a^4 z^6+5 a^4 z^4+13 a^4 z^2-8 a^4+4 a^3 z^9+2 a^3 z^7-24 a^3 z^5+25 a^3 z^3-14 a^3 z+4 a^3 z^{-1} +6 a^2 z^8-12 a^2 z^6+3 a^2 z^4+2 a^2 z^2+4 a z^7-10 a z^5+8 a z^3-2 a z+z^6-2 z^4+z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



