L11a95

From Knot Atlas
Revision as of 02:54, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a94.gif

L11a94

L11a96.gif

L11a96

L11a95.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a95 at Knotilus!


Link Presentations

[edit Notes on L11a95's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,12,15,11 X18,15,19,16 X16,9,17,10 X10,17,11,18 X22,19,5,20 X20,7,21,8 X8,21,9,22 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 8, -9, 5, -6, 3, -2, 11, -3, 4, -5, 6, -4, 7, -8, 9, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a95 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ \frac{19}{q^{9/2}}-\frac{20}{q^{7/2}}+\frac{16}{q^{5/2}}+q^{3/2}-\frac{14}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{3}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{12}{q^{13/2}}-\frac{16}{q^{11/2}}-4 \sqrt{q}+\frac{8}{\sqrt{q}} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z a^9+a^9 z^{-1} -3 z^3 a^7-7 z a^7-5 a^7 z^{-1} +3 z^5 a^5+10 z^3 a^5+14 z a^5+8 a^5 z^{-1} -z^7 a^3-4 z^5 a^3-8 z^3 a^3-9 z a^3-4 a^3 z^{-1} +z^5 a+2 z^3 a+z a }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-6 a^{10} z^4+5 a^{10} z^2-2 a^{10}+4 a^9 z^7-3 a^9 z^5-2 a^9 z^3+a^9 z+a^9 z^{-1} +4 a^8 z^8+3 a^8 z^6-18 a^8 z^4+22 a^8 z^2-9 a^8+3 a^7 z^9+6 a^7 z^7-17 a^7 z^5+16 a^7 z^3-9 a^7 z+5 a^7 z^{-1} +a^6 z^{10}+10 a^6 z^8-13 a^6 z^6-12 a^6 z^4+29 a^6 z^2-14 a^6+7 a^5 z^9-27 a^5 z^5+33 a^5 z^3-21 a^5 z+8 a^5 z^{-1} +a^4 z^{10}+12 a^4 z^8-26 a^4 z^6+5 a^4 z^4+13 a^4 z^2-8 a^4+4 a^3 z^9+2 a^3 z^7-24 a^3 z^5+25 a^3 z^3-14 a^3 z+4 a^3 z^{-1} +6 a^2 z^8-12 a^2 z^6+3 a^2 z^4+2 a^2 z^2+4 a z^7-10 a z^5+8 a z^3-2 a z+z^6-2 z^4+z^2 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
4           1-1
2          3 3
0         51 -4
-2        93  6
-4       97   -2
-6      117    4
-8     89     1
-10    811      -3
-12   48       4
-14  28        -6
-16 14         3
-18 2          -2
-201           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a94.gif

L11a94

L11a96.gif

L11a96