L11n173
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n173's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X12,7,13,8 X15,7,16,22 X14,6,15,5 X6,14,1,13 X21,17,22,16 X18,10,19,9 X20,11,21,12 X4,18,5,17 X2,19,3,20 |
| Gauss code | {1, -11, 2, -10, 5, -6}, {3, -1, 8, -2, 9, -3, 6, -5, -4, 7, 10, -8, 11, -9, -7, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-t(1) t(2)^4-3 t(1)^2 t(2)^3+5 t(1) t(2)^3-2 t(2)^3+4 t(1)^2 t(2)^2-9 t(1) t(2)^2+4 t(2)^2-2 t(1)^2 t(2)+5 t(1) t(2)-3 t(2)-t(1)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -6 q^{9/2}+9 q^{7/2}-\frac{1}{q^{7/2}}-13 q^{5/2}+\frac{4}{q^{5/2}}+14 q^{3/2}-\frac{8}{q^{3/2}}+2 q^{11/2}-14 \sqrt{q}+\frac{11}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-5} +z^5 a^{-3} +z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} -z^7 a^{-1} +a z^5-4 z^5 a^{-1} +2 a z^3-5 z^3 a^{-1} +a z+ a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^9 a^{-1} -2 z^9 a^{-3} -9 z^8 a^{-2} -3 z^8 a^{-4} -6 z^8-7 a z^7-7 z^7 a^{-1} -z^7 a^{-3} -z^7 a^{-5} -4 a^2 z^6+15 z^6 a^{-2} +3 z^6 a^{-4} +8 z^6-a^3 z^5+13 a z^5+17 z^5 a^{-1} -2 z^5 a^{-3} -5 z^5 a^{-5} +6 a^2 z^4-9 z^4 a^{-2} -5 z^4 a^{-4} -3 z^4 a^{-6} -z^4+a^3 z^3-6 a z^3-7 z^3 a^{-1} +9 z^3 a^{-3} +9 z^3 a^{-5} -a^2 z^2+2 z^2 a^{-2} +4 z^2 a^{-4} +3 z^2 a^{-6} +a z-2 z a^{-1} -6 z a^{-3} -3 z a^{-5} - a^{-2} + a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



