L10a93
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a93's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X4,20,5,19 X14,5,15,6 X18,13,19,14 X16,7,17,8 X6,15,7,16 X8,17,1,18 |
| Gauss code | {1, -4, 2, -5, 6, -9, 8, -10}, {4, -1, 3, -2, 7, -6, 9, -8, 10, -7, 5, -3} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^3 v^3-2 u^3 v^2+u^3 v-2 u^2 v^3+5 u^2 v^2-3 u^2 v+u^2+u v^3-3 u v^2+5 u v-2 u+v^2-2 v+1}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{9}{q^{5/2}}-\frac{10}{q^{7/2}}+\frac{9}{q^{9/2}}-\frac{8}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^7-2 z a^7+2 z^5 a^5+7 z^3 a^5+6 z a^5+a^5 z^{-1} -z^7 a^3-5 z^5 a^3-9 z^3 a^3-7 z a^3-a^3 z^{-1} +z^5 a+3 z^3 a+z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^4 a^{10}+z^2 a^{10}-3 z^5 a^9+4 z^3 a^9-z a^9-4 z^6 a^8+4 z^4 a^8-4 z^7 a^7+4 z^5 a^7-z^3 a^7-3 z^8 a^6+3 z^6 a^6-2 z^4 a^6+z^2 a^6-z^9 a^5-5 z^7 a^5+18 z^5 a^5-21 z^3 a^5+9 z a^5-a^5 z^{-1} -6 z^8 a^4+17 z^6 a^4-16 z^4 a^4+4 z^2 a^4+a^4-z^9 a^3-4 z^7 a^3+22 z^5 a^3-26 z^3 a^3+10 z a^3-a^3 z^{-1} -3 z^8 a^2+9 z^6 a^2-6 z^4 a^2+z^2 a^2-3 z^7 a+11 z^5 a-10 z^3 a+2 z a-z^6+3 z^4-z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



