L10a93

From Knot Atlas
Revision as of 02:55, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10a92.gif

L10a92

L10a94.gif

L10a94

L10a93.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a93 at Knotilus!


Link Presentations

[edit Notes on L10a93's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X20,12,9,11 X2,9,3,10 X4,20,5,19 X14,5,15,6 X18,13,19,14 X16,7,17,8 X6,15,7,16 X8,17,1,18
Gauss code {1, -4, 2, -5, 6, -9, 8, -10}, {4, -1, 3, -2, 7, -6, 9, -8, 10, -7, 5, -3}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L10a93 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{u^3 v^3-2 u^3 v^2+u^3 v-2 u^2 v^3+5 u^2 v^2-3 u^2 v+u^2+u v^3-3 u v^2+5 u v-2 u+v^2-2 v+1}{u^{3/2} v^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{7}{q^{3/2}}+\frac{9}{q^{5/2}}-\frac{10}{q^{7/2}}+\frac{9}{q^{9/2}}-\frac{8}{q^{11/2}}+\frac{5}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z^3 a^7-2 z a^7+2 z^5 a^5+7 z^3 a^5+6 z a^5+a^5 z^{-1} -z^7 a^3-5 z^5 a^3-9 z^3 a^3-7 z a^3-a^3 z^{-1} +z^5 a+3 z^3 a+z a }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -z^4 a^{10}+z^2 a^{10}-3 z^5 a^9+4 z^3 a^9-z a^9-4 z^6 a^8+4 z^4 a^8-4 z^7 a^7+4 z^5 a^7-z^3 a^7-3 z^8 a^6+3 z^6 a^6-2 z^4 a^6+z^2 a^6-z^9 a^5-5 z^7 a^5+18 z^5 a^5-21 z^3 a^5+9 z a^5-a^5 z^{-1} -6 z^8 a^4+17 z^6 a^4-16 z^4 a^4+4 z^2 a^4+a^4-z^9 a^3-4 z^7 a^3+22 z^5 a^3-26 z^3 a^3+10 z a^3-a^3 z^{-1} -3 z^8 a^2+9 z^6 a^2-6 z^4 a^2+z^2 a^2-3 z^7 a+11 z^5 a-10 z^3 a+2 z a-z^6+3 z^4-z^2 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-10123χ
4          1-1
2         2 2
0        21 -1
-2       52  3
-4      53   -2
-6     54    1
-8    45     1
-10   45      -1
-12  25       3
-14 13        -2
-16 2         2
-181          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-4 }[/math] [math]\displaystyle{ i=-2 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a92.gif

L10a92

L10a94.gif

L10a94