L11a429
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a429's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X18,12,19,11 X16,13,17,14 X14,6,15,5 X10,16,5,15 X22,20,11,19 X8,22,9,21 X20,8,21,7 X2,9,3,10 X4,18,1,17 |
| Gauss code | {1, -10, 2, -11}, {5, -1, 9, -8, 10, -6}, {3, -2, 4, -5, 6, -4, 11, -3, 7, -9, 8, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(1) t(3)^2 t(2)^2-2 t(3)^2 t(2)^2+2 t(1) t(2)^2-5 t(1) t(3) t(2)^2+4 t(3) t(2)^2-2 t(2)^2-4 t(1) t(3)^2 t(2)+5 t(3)^2 t(2)-5 t(1) t(2)+9 t(1) t(3) t(2)-9 t(3) t(2)+4 t(2)+2 t(1) t(3)^2-2 t(3)^2+2 t(1)-4 t(1) t(3)+5 t(3)-2}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^9-4 q^8+9 q^7-14 q^6+20 q^5-22 q^4+23 q^3-19 q^2- q^{-2} +15 q+4 q^{-1} -8 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} -2 z^4 a^{-6} -z^4+4 z^2 a^{-2} -4 z^2 a^{-4} -z^2 a^{-6} +z^2 a^{-8} -z^2+4 a^{-2} -6 a^{-4} +2 a^{-6} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-10} -2 z^4 a^{-10} +z^2 a^{-10} +4 z^7 a^{-9} -9 z^5 a^{-9} +5 z^3 a^{-9} +7 z^8 a^{-8} -16 z^6 a^{-8} +11 z^4 a^{-8} -4 z^2 a^{-8} + a^{-8} +6 z^9 a^{-7} -7 z^7 a^{-7} -4 z^5 a^{-7} +3 z^3 a^{-7} +2 z^{10} a^{-6} +12 z^8 a^{-6} -34 z^6 a^{-6} +23 z^4 a^{-6} -2 z^2 a^{-6} + a^{-6} z^{-2} -3 a^{-6} +12 z^9 a^{-5} -18 z^7 a^{-5} +6 z^5 a^{-5} -5 z^3 a^{-5} +6 z a^{-5} -2 a^{-5} z^{-1} +2 z^{10} a^{-4} +13 z^8 a^{-4} -28 z^6 a^{-4} +12 z^4 a^{-4} +8 z^2 a^{-4} +2 a^{-4} z^{-2} -8 a^{-4} +6 z^9 a^{-3} -9 z^5 a^{-3} +z^3 a^{-3} +6 z a^{-3} -2 a^{-3} z^{-1} +8 z^8 a^{-2} -7 z^6 a^{-2} -4 z^4 a^{-2} +8 z^2 a^{-2} + a^{-2} z^{-2} -5 a^{-2} +7 z^7 a^{-1} +a z^5-9 z^5 a^{-1} -a z^3+3 z^3 a^{-1} +4 z^6-6 z^4+3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



