L10n36
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n36's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X16,13,17,14 X14,9,15,10 X10,15,11,16 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X11,1,12,4 |
| Gauss code | {1, -9, -2, 10}, {9, -1, -7, 8, 4, -5, -10, 2, 3, -4, 5, -3, -6, 7, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ 0 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}+\frac{1}{q^{9/2}}-q^{7/2}-\frac{1}{q^{7/2}}+q^{5/2}+\frac{1}{q^{5/2}}-q^{3/2}-\frac{1}{q^{3/2}}-\sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^3+z^3 a^{-3} -3 a^3 z+3 z a^{-3} -2 a^3 z^{-1} +2 a^{-3} z^{-1} +a z^5-z^5 a^{-1} +6 a z^3-6 z^3 a^{-1} +11 a z-11 z a^{-1} +7 a z^{-1} -7 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^3 z^7-a z^7-z^7 a^{-1} -z^7 a^{-3} -a^4 z^6-2 a^2 z^6-2 z^6 a^{-2} -z^6 a^{-4} -2 z^6+5 a^3 z^5+7 a z^5+7 z^5 a^{-1} +5 z^5 a^{-3} +5 a^4 z^4+12 a^2 z^4+12 z^4 a^{-2} +5 z^4 a^{-4} +14 z^4-6 a^3 z^3-14 a z^3-14 z^3 a^{-1} -6 z^3 a^{-3} -6 a^4 z^2-18 a^2 z^2-18 z^2 a^{-2} -6 z^2 a^{-4} -24 z^2+4 a^3 z+14 a z+14 z a^{-1} +4 z a^{-3} +2 a^4+8 a^2+8 a^{-2} +2 a^{-4} +13-2 a^3 z^{-1} -7 a z^{-1} -7 a^{-1} z^{-1} -2 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



