L11n98
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n98's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X13,21,14,20 X7,17,8,16 X9,19,10,18 X17,9,18,8 X19,11,20,10 X15,5,16,22 X21,15,22,14 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -4, 6, -5, 7, 11, -2, -3, 9, -8, 4, -6, 5, -7, 3, -9, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(2)^7-t(1) t(2)^5+t(2)^5+2 t(1) t(2)^4-2 t(2)^4-2 t(1) t(2)^3+2 t(2)^3+t(1) t(2)^2-t(2)^2-t(1)}{\sqrt{t(1)} t(2)^{7/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{17/2}-2 q^{15/2}+4 q^{13/2}-4 q^{11/2}+4 q^{9/2}-4 q^{7/2}+2 q^{5/2}-q^{3/2}-\sqrt{q}-\frac{1}{q^{3/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-3} +z^5 a^{-1} -8 z^5 a^{-3} +6 z^3 a^{-1} -20 z^3 a^{-3} +3 z^3 a^{-5} +z^3 a^{-7} +10 z a^{-1} -20 z a^{-3} +7 z a^{-5} +z a^{-7} +4 a^{-1} z^{-1} -7 a^{-3} z^{-1} +3 a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^9 a^{-1} -z^9 a^{-3} -z^8 a^{-2} -z^8 a^{-4} +9 z^7 a^{-1} +10 z^7 a^{-3} -z^7 a^{-7} +9 z^6 a^{-2} +9 z^6 a^{-4} -2 z^6 a^{-6} -2 z^6 a^{-8} -28 z^5 a^{-1} -33 z^5 a^{-3} -3 z^5 a^{-5} -2 z^5 a^{-9} -24 z^4 a^{-2} -26 z^4 a^{-4} +z^4 a^{-6} +2 z^4 a^{-8} -z^4 a^{-10} +37 z^3 a^{-1} +46 z^3 a^{-3} +6 z^3 a^{-5} +3 z^3 a^{-9} +23 z^2 a^{-2} +24 z^2 a^{-4} +z^2 a^{-8} +2 z^2 a^{-10} -20 z a^{-1} -29 z a^{-3} -8 z a^{-5} +z a^{-7} -7 a^{-2} -7 a^{-4} - a^{-10} +4 a^{-1} z^{-1} +7 a^{-3} z^{-1} +3 a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



