L11a63
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a63's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,8,15,7 X22,16,5,15 X16,11,17,12 X20,18,21,17 X18,10,19,9 X10,20,11,19 X8,21,9,22 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 7, -8, 5, -2, 11, -3, 4, -5, 6, -7, 8, -6, 9, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{17/2}-4 q^{15/2}+9 q^{13/2}-13 q^{11/2}+17 q^{9/2}-20 q^{7/2}+18 q^{5/2}-16 q^{3/2}+11 \sqrt{q}-\frac{7}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-10} +4 z^5 a^{-9} -z^3 a^{-9} +9 z^6 a^{-8} -9 z^4 a^{-8} +4 z^2 a^{-8} - a^{-8} +12 z^7 a^{-7} -16 z^5 a^{-7} +9 z^3 a^{-7} -3 z a^{-7} + a^{-7} z^{-1} +10 z^8 a^{-6} -8 z^6 a^{-6} -7 z^4 a^{-6} +5 z^2 a^{-6} -2 a^{-6} +5 z^9 a^{-5} +9 z^7 a^{-5} -39 z^5 a^{-5} +31 z^3 a^{-5} -12 z a^{-5} +3 a^{-5} z^{-1} +z^{10} a^{-4} +17 z^8 a^{-4} -46 z^6 a^{-4} +31 z^4 a^{-4} -7 z^2 a^{-4} +8 z^9 a^{-3} -8 z^7 a^{-3} -28 z^5 a^{-3} +41 z^3 a^{-3} -18 z a^{-3} +3 a^{-3} z^{-1} +z^{10} a^{-2} +10 z^8 a^{-2} -40 z^6 a^{-2} +41 z^4 a^{-2} -13 z^2 a^{-2} +2 a^{-2} +3 z^9 a^{-1} +a z^7-4 z^7 a^{-1} -4 a z^5-13 z^5 a^{-1} +6 a z^3+26 z^3 a^{-1} -4 a z-13 z a^{-1} +a z^{-1} +2 a^{-1} z^{-1} +3 z^8-11 z^6+13 z^4-5 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



