L11n259
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n259's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X22,20,9,19 X20,16,21,15 X16,22,17,21 X17,12,18,13 X2536 X9,1,10,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -3, 4}, {-11, 2, -5, 9, -4, 3, 7, -8, -9, 5, 6, -7, 8, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v w^3-2 u v w^2+u v w-u v-u w^3+2 u w^2-2 u w+u-v w^3+2 v w^2-2 v w+v+w^3-w^2+2 w-1}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^6+4 q^5-6 q^4+8 q^3-7 q^2- q^{-2} +8 q+4 q^{-1} -5 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +3 z^4 a^{-2} -z^4 a^{-4} -z^4+z^2 a^{-2} -z^2 a^{-4} -z^2-3 a^{-2} + a^{-4} +2-2 a^{-2} z^{-2} + a^{-4} z^{-2} + z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-7} +4 z^4 a^{-6} -z^2 a^{-6} +z^7 a^{-5} +2 z^5 a^{-5} +z^8 a^{-4} +2 z^6 a^{-4} -z^4 a^{-4} -3 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +5 z^7 a^{-3} -6 z^5 a^{-3} +z^3 a^{-3} -3 z a^{-3} +2 a^{-3} z^{-1} +z^8 a^{-2} +6 z^6 a^{-2} -14 z^4 a^{-2} +z^2 a^{-2} -2 a^{-2} z^{-2} +5 a^{-2} +4 z^7 a^{-1} +a z^5-7 z^5 a^{-1} -a z^3+z^3 a^{-1} -3 z a^{-1} +2 a^{-1} z^{-1} +4 z^6-9 z^4+3 z^2- z^{-2} +3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



