L10a9
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a9's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X18,14,19,13 X16,9,17,10 X8,17,9,18 X20,16,5,15 X14,20,15,19 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -6, 5, -2, 10, -3, 4, -8, 7, -5, 6, -4, 8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1)^3 \left(t(2)^2+1\right)}{\sqrt{t(1)} t(2)^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9 q^{9/2}-10 q^{7/2}+10 q^{5/2}-\frac{1}{q^{5/2}}-10 q^{3/2}+\frac{2}{q^{3/2}}-q^{15/2}+3 q^{13/2}-6 q^{11/2}+7 \sqrt{q}-\frac{5}{\sqrt{q}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{-5} -3 z^3 a^{-5} -3 z a^{-5} - a^{-5} z^{-1} +z^7 a^{-3} +5 z^5 a^{-3} +10 z^3 a^{-3} +10 z a^{-3} +3 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +3 a z-10 z a^{-1} +2 a z^{-1} -4 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-9} +3 z^4 a^{-8} +6 z^5 a^{-7} -4 z^3 a^{-7} +z a^{-7} +9 z^6 a^{-6} -14 z^4 a^{-6} +7 z^2 a^{-6} - a^{-6} +9 z^7 a^{-5} -18 z^5 a^{-5} +10 z^3 a^{-5} -4 z a^{-5} + a^{-5} z^{-1} +5 z^8 a^{-4} -4 z^6 a^{-4} -15 z^4 a^{-4} +14 z^2 a^{-4} -3 a^{-4} +z^9 a^{-3} +11 z^7 a^{-3} -44 z^5 a^{-3} +45 z^3 a^{-3} -19 z a^{-3} +3 a^{-3} z^{-1} +7 z^8 a^{-2} -21 z^6 a^{-2} +11 z^4 a^{-2} +6 z^2 a^{-2} -3 a^{-2} +z^9 a^{-1} +a z^7+3 z^7 a^{-1} -5 a z^5-25 z^5 a^{-1} +9 a z^3+39 z^3 a^{-1} -7 a z-21 z a^{-1} +2 a z^{-1} +4 a^{-1} z^{-1} +2 z^8-8 z^6+9 z^4-z^2-2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



