L11a500
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a500's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X22,14,19,13 X20,8,21,7 X10,20,11,19 X16,10,17,9 X14,18,15,17 X8,16,9,15 X18,22,5,21 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {5, -4, 9, -3}, {10, -1, 4, -8, 6, -5, 11, -2, 3, -7, 8, -6, 7, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(w-1) \left(2 u v w^3-4 u v w^2+3 u v w-u v-2 u w^3+4 u w^2-4 u w-4 v w^3+4 v w^2-2 v w-w^4+3 w^3-4 w^2+2 w\right)}{\sqrt{u} \sqrt{v} w^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+5 q^7-12 q^6+18 q^5-23 q^4+27 q^3-25 q^2+22 q-14+9 q^{-1} -3 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} -z^4 a^{-2} +z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-7 z^2 a^{-2} +3 z^2 a^{-4} -z^2+a^2-10 a^{-2} +7 a^{-4} - a^{-6} +3-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} +5 z^6 a^{-8} -3 z^4 a^{-8} +12 z^7 a^{-7} -16 z^5 a^{-7} +5 z^3 a^{-7} -2 z a^{-7} + a^{-7} z^{-1} +15 z^8 a^{-6} -23 z^6 a^{-6} +11 z^4 a^{-6} -4 z^2 a^{-6} - a^{-6} z^{-2} +2 a^{-6} +9 z^9 a^{-5} +3 z^7 a^{-5} -30 z^5 a^{-5} +26 z^3 a^{-5} -15 z a^{-5} +5 a^{-5} z^{-1} +2 z^{10} a^{-4} +25 z^8 a^{-4} -60 z^6 a^{-4} +47 z^4 a^{-4} -25 z^2 a^{-4} -4 a^{-4} z^{-2} +14 a^{-4} +14 z^9 a^{-3} -11 z^7 a^{-3} -31 z^5 a^{-3} +52 z^3 a^{-3} -33 z a^{-3} +9 a^{-3} z^{-1} +2 z^{10} a^{-2} +16 z^8 a^{-2} +a^2 z^6-47 z^6 a^{-2} -3 a^2 z^4+53 z^4 a^{-2} +3 a^2 z^2-40 z^2 a^{-2} -5 a^{-2} z^{-2} -a^2+21 a^{-2} +5 z^9 a^{-1} +3 a z^7+z^7 a^{-1} -6 a z^5-24 z^5 a^{-1} +3 a z^3+34 z^3 a^{-1} -20 z a^{-1} +5 a^{-1} z^{-1} +6 z^8-14 z^6+17 z^4-16 z^2-2 z^{-2} +9 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



