L11a495
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a495's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X22,12,19,11 X10,4,11,3 X20,5,21,6 X18,21,5,22 X12,20,13,19 X14,9,15,10 X2,14,3,13 X8,15,9,16 |
| Gauss code | {1, -10, 5, -3}, {8, -6, 7, -4}, {6, -1, 2, -11, 9, -5, 4, -8, 10, -9, 11, -2, 3, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-7} +3 q^{-6} -7 q^{-5} +q^4+12 q^{-4} -4 q^3-16 q^{-3} +10 q^2+21 q^{-2} -14 q-20 q^{-1} +19 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 \left(-z^2\right)-a^6+2 a^4 z^4+3 a^4 z^2+a^4-a^2 z^6-a^2 z^4+z^4 a^{-2} +a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +3 a^2+2 a^{-2} -z^6-2 z^4-4 z^2-2 z^{-2} -5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^7-4 a^7 z^5+5 a^7 z^3-2 a^7 z+3 a^6 z^8-11 a^6 z^6+13 a^6 z^4-7 a^6 z^2+2 a^6+4 a^5 z^9-11 a^5 z^7+5 a^5 z^5+5 a^5 z^3-3 a^5 z+2 a^4 z^{10}+5 a^4 z^8-33 a^4 z^6+41 a^4 z^4+z^4 a^{-4} -17 a^4 z^2+2 a^4+12 a^3 z^9-31 a^3 z^7+21 a^3 z^5+4 z^5 a^{-3} -6 a^3 z^3+3 a^3 z+2 a^2 z^{10}+15 a^2 z^8-48 a^2 z^6+10 z^6 a^{-2} +34 a^2 z^4-10 z^4 a^{-2} -a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -6 a^2-4 a^{-2} +8 a z^9-5 a z^7+14 z^7 a^{-1} -10 a z^5-18 z^5 a^{-1} -2 a z^3+4 z^3 a^{-1} +7 a z+3 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +13 z^8-16 z^6-5 z^4+15 z^2+2 z^{-2} -9 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



