L11a495

From Knot Atlas
Revision as of 02:58, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a494.gif

L11a494

L11a496.gif

L11a496

L11a495.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a495 at Knotilus!


Link Presentations

[edit Notes on L11a495's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X22,12,19,11 X10,4,11,3 X20,5,21,6 X18,21,5,22 X12,20,13,19 X14,9,15,10 X2,14,3,13 X8,15,9,16
Gauss code {1, -10, 5, -3}, {8, -6, 7, -4}, {6, -1, 2, -11, 9, -5, 4, -8, 10, -9, 11, -2, 3, -7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a495 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{2 (u-1) (v-1) (w-1)^3}{\sqrt{u} \sqrt{v} w^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ - q^{-7} +3 q^{-6} -7 q^{-5} +q^4+12 q^{-4} -4 q^3-16 q^{-3} +10 q^2+21 q^{-2} -14 q-20 q^{-1} +19 }[/math] (db)
Signature 0 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^6 \left(-z^2\right)-a^6+2 a^4 z^4+3 a^4 z^2+a^4-a^2 z^6-a^2 z^4+z^4 a^{-2} +a^2 z^2+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +3 a^2+2 a^{-2} -z^6-2 z^4-4 z^2-2 z^{-2} -5 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ a^7 z^7-4 a^7 z^5+5 a^7 z^3-2 a^7 z+3 a^6 z^8-11 a^6 z^6+13 a^6 z^4-7 a^6 z^2+2 a^6+4 a^5 z^9-11 a^5 z^7+5 a^5 z^5+5 a^5 z^3-3 a^5 z+2 a^4 z^{10}+5 a^4 z^8-33 a^4 z^6+41 a^4 z^4+z^4 a^{-4} -17 a^4 z^2+2 a^4+12 a^3 z^9-31 a^3 z^7+21 a^3 z^5+4 z^5 a^{-3} -6 a^3 z^3+3 a^3 z+2 a^2 z^{10}+15 a^2 z^8-48 a^2 z^6+10 z^6 a^{-2} +34 a^2 z^4-10 z^4 a^{-2} -a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -6 a^2-4 a^{-2} +8 a z^9-5 a z^7+14 z^7 a^{-1} -10 a z^5-18 z^5 a^{-1} -2 a z^3+4 z^3 a^{-1} +7 a z+3 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +13 z^8-16 z^6-5 z^4+15 z^2+2 z^{-2} -9 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
9           11
7          3 -3
5         71 6
3        73  -4
1       127   5
-1      1211    -1
-3     98     1
-5    712      5
-7   59       -4
-9  27        5
-11 15         -4
-13 2          2
-151           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{12}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{12} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{12} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a494.gif

L11a494

L11a496.gif

L11a496