L10a61
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a61's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X18,14,19,13 X6,12,1,11 X16,20,17,19 X4,16,5,15 X14,6,15,5 X12,18,13,17 |
| Gauss code | {1, -4, 2, -8, 9, -6}, {4, -1, 3, -2, 6, -10, 5, -9, 8, -7, 10, -5, 7, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(2)^4-t(2)^4+2 t(1)^2 t(2)^3-6 t(1) t(2)^3+3 t(2)^3-4 t(1)^2 t(2)^2+9 t(1) t(2)^2-4 t(2)^2+3 t(1)^2 t(2)-6 t(1) t(2)+2 t(2)-t(1)^2+t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{19/2}+4 q^{17/2}-7 q^{15/2}+11 q^{13/2}-14 q^{11/2}+14 q^{9/2}-14 q^{7/2}+10 q^{5/2}-7 q^{3/2}+3 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-3} -2 z^5 a^{-5} +z^3 a^{-1} -5 z^3 a^{-5} +3 z^3 a^{-7} +z a^{-1} +3 z a^{-3} -6 z a^{-5} +4 z a^{-7} -z a^{-9} +2 a^{-3} z^{-1} -3 a^{-5} z^{-1} + a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-11} -z^3 a^{-11} +4 z^6 a^{-10} -7 z^4 a^{-10} +3 z^2 a^{-10} +6 z^7 a^{-9} -10 z^5 a^{-9} +5 z^3 a^{-9} -2 z a^{-9} +4 z^8 a^{-8} +3 z^6 a^{-8} -18 z^4 a^{-8} +12 z^2 a^{-8} - a^{-8} +z^9 a^{-7} +14 z^7 a^{-7} -34 z^5 a^{-7} +28 z^3 a^{-7} -10 z a^{-7} + a^{-7} z^{-1} +8 z^8 a^{-6} -5 z^6 a^{-6} -13 z^4 a^{-6} +14 z^2 a^{-6} -3 a^{-6} +z^9 a^{-5} +13 z^7 a^{-5} -33 z^5 a^{-5} +32 z^3 a^{-5} -15 z a^{-5} +3 a^{-5} z^{-1} +4 z^8 a^{-4} -z^6 a^{-4} -7 z^4 a^{-4} +7 z^2 a^{-4} -3 a^{-4} +5 z^7 a^{-3} -9 z^5 a^{-3} +8 z^3 a^{-3} -6 z a^{-3} +2 a^{-3} z^{-1} +3 z^6 a^{-2} -5 z^4 a^{-2} +2 z^2 a^{-2} +z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



