L10n69
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n69's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X9,18,10,19 X11,16,12,17 X17,20,18,11 X15,1,16,4 X19,10,20,5 |
| Gauss code | {1, -4, -3, 9}, {-2, -1, 5, 3, -6, 10}, {-7, 2, 4, -5, -9, 7, -8, 6, -10, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v w^2-2 u v w-u w^2+2 u w-2 v^2 w+v^2+2 v w-2 v}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-9} -2 q^{-8} +3 q^{-7} -4 q^{-6} +5 q^{-5} -4 q^{-4} +5 q^{-3} -2 q^{-2} +2 q^{-1} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^8+a^8-z^4 a^6-2 z^2 a^6+a^6 z^{-2} -a^6-z^4 a^4-2 z^2 a^4-2 a^4 z^{-2} -3 a^4+2 z^2 a^2+a^2 z^{-2} +3 a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^6-4 a^{10} z^4+4 a^{10} z^2-a^{10}+2 a^9 z^7-8 a^9 z^5+8 a^9 z^3-2 a^9 z+a^8 z^8-a^8 z^6-6 a^8 z^4+6 a^8 z^2-a^8+4 a^7 z^7-14 a^7 z^5+14 a^7 z^3-6 a^7 z+a^6 z^8-7 a^6 z^4+8 a^6 z^2+a^6 z^{-2} -3 a^6+2 a^5 z^7-5 a^5 z^5+5 a^5 z^3-2 a^5 z^{-1} +2 a^4 z^6-5 a^4 z^4+9 a^4 z^2+2 a^4 z^{-2} -6 a^4+a^3 z^5-a^3 z^3+4 a^3 z-2 a^3 z^{-1} +3 a^2 z^2+a^2 z^{-2} -4 a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



