L11a482
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a482's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X12,3,13,4 X10,5,11,6 X16,11,5,12 X4,15,1,16 X20,14,21,13 X18,7,19,8 X8,17,9,18 X22,20,17,19 X14,22,15,21 |
| Gauss code | {1, -2, 3, -6}, {9, -8, 10, -7, 11, -10}, {4, -1, 8, -9, 2, -4, 5, -3, 7, -11, 6, -5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) (t(3)-2) (t(3)-1) (2 t(3)-1)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^2+5 q-11+17 q^{-1} -20 q^{-2} +25 q^{-3} -22 q^{-4} +19 q^{-5} -13 q^{-6} +7 q^{-7} -3 q^{-8} + q^{-9} } (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8+a^8-2 z^4 a^6-3 z^2 a^6+a^6 z^{-2} -2 a^6+z^6 a^4+z^4 a^4+z^2 a^4-2 a^4 z^{-2} -a^4+z^6 a^2+z^4 a^2+z^2 a^2+a^2 z^{-2} +2 a^2-z^4} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-3 z^4 a^{10}+3 z^2 a^{10}-a^{10}+3 z^7 a^9-8 z^5 a^9+7 z^3 a^9-2 z a^9+4 z^8 a^8-5 z^6 a^8-4 z^4 a^8+6 z^2 a^8-a^8+4 z^9 a^7-z^7 a^7-11 z^5 a^7+13 z^3 a^7-6 z a^7+2 z^{10} a^6+8 z^8 a^6-20 z^6 a^6+11 z^4 a^6+z^2 a^6+a^6 z^{-2} -a^6+12 z^9 a^5-17 z^7 a^5+z^5 a^5+8 z^3 a^5-2 z a^5-2 a^5 z^{-1} +2 z^{10} a^4+17 z^8 a^4-39 z^6 a^4+23 z^4 a^4-z^2 a^4+2 a^4 z^{-2} -2 a^4+8 z^9 a^3-2 z^7 a^3-12 z^5 a^3+4 z^3 a^3+2 z a^3-2 a^3 z^{-1} +13 z^8 a^2-20 z^6 a^2+7 z^4 a^2+z^2 a^2+a^2 z^{-2} -2 a^2+11 z^7 a-15 z^5 a+2 z^3 a+5 z^6-4 z^4+z^5 a^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



