L10n46
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n46's Link Presentations]
| Planar diagram presentation | X8192 X9,19,10,18 X6718 X13,20,14,7 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X19,14,20,15 X17,2,18,3 |
| Gauss code | {1, 10, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, -4, 9, 7, -8, -10, 2, -9, 4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u^2 v^2+u v^4-2 u v^3+u v^2-2 u v+u-v^2}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{4}{q^{9/2}}-\frac{3}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{2}{q^{3/2}}-\frac{2}{q^{15/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-1} -a^7 z^3-3 a^7 z-2 a^7 z^{-1} +a^5 z^5+4 a^5 z^3+5 a^5 z+2 a^5 z^{-1} -2 a^3 z^3-5 a^3 z-a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -3 z^3 a^9+6 z a^9-a^9 z^{-1} -z^6 a^8+2 z^4 a^8-2 z^2 a^8-z^7 a^7+4 z^5 a^7-11 z^3 a^7+10 z a^7-2 a^7 z^{-1} -2 z^6 a^6+4 z^4 a^6-4 z^2 a^6-a^6-z^7 a^5+4 z^5 a^5-11 z^3 a^5+10 z a^5-2 a^5 z^{-1} -z^6 a^4+2 z^4 a^4-2 z^2 a^4-3 z^3 a^3+6 z a^3-a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



