L11a79
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a79's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,8,17,7 X22,18,5,17 X18,14,19,13 X14,22,15,21 X20,10,21,9 X8,16,9,15 X10,20,11,19 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -8, 7, -9, 11, -2, 5, -6, 8, -3, 4, -5, 9, -7, 6, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3 t(1) t(2)^3-7 t(2)^3-11 t(1) t(2)^2+14 t(2)^2+14 t(1) t(2)-11 t(2)-7 t(1)+3}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -15 q^{9/2}+20 q^{7/2}-\frac{1}{q^{7/2}}-23 q^{5/2}+\frac{3}{q^{5/2}}+22 q^{3/2}-\frac{8}{q^{3/2}}+q^{15/2}-4 q^{13/2}+10 q^{11/2}-20 \sqrt{q}+\frac{13}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^{-7} -3 z^3 a^{-5} -z a^{-5} + a^{-5} z^{-1} +2 z^5 a^{-3} +2 z^3 a^{-3} +a^3 z+z a^{-3} - a^{-3} z^{-1} +z^5 a^{-1} -2 a z^3-3 z^3 a^{-1} +a z-5 z a^{-1} +2 a z^{-1} -2 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-8} -2 z^4 a^{-8} +z^2 a^{-8} +4 z^7 a^{-7} -8 z^5 a^{-7} +4 z^3 a^{-7} -z a^{-7} +8 z^8 a^{-6} -19 z^6 a^{-6} +15 z^4 a^{-6} -10 z^2 a^{-6} +4 a^{-6} +7 z^9 a^{-5} -9 z^7 a^{-5} -7 z^5 a^{-5} +9 z^3 a^{-5} -2 z a^{-5} - a^{-5} z^{-1} +2 z^{10} a^{-4} +16 z^8 a^{-4} -54 z^6 a^{-4} +59 z^4 a^{-4} -34 z^2 a^{-4} +9 a^{-4} +13 z^9 a^{-3} -21 z^7 a^{-3} +a^3 z^5+2 z^5 a^{-3} -2 a^3 z^3+9 z^3 a^{-3} +a^3 z-2 z a^{-3} - a^{-3} z^{-1} +2 z^{10} a^{-2} +15 z^8 a^{-2} +3 a^2 z^6-44 z^6 a^{-2} -4 a^2 z^4+46 z^4 a^{-2} +a^2 z^2-20 z^2 a^{-2} +4 a^{-2} +6 z^9 a^{-1} +6 a z^7-2 z^7 a^{-1} -10 a z^5-10 z^5 a^{-1} +10 a z^3+16 z^3 a^{-1} -7 a z-9 z a^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} +7 z^8-7 z^6+4 z^2-2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



