L11n335
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n335's Link Presentations]
| Planar diagram presentation | X6172 X11,16,12,17 X8493 X2,18,3,17 X5,14,6,15 X18,7,19,8 X15,12,16,5 X20,14,21,13 X22,9,13,10 X10,21,11,22 X4,19,1,20 |
| Gauss code | {1, -4, 3, -11}, {-5, -1, 6, -3, 9, -10, -2, 7}, {8, 5, -7, 2, 4, -6, 11, -8, 10, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1) (w-1) (v w-2 v-2 w+1)}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^2+5 q-9+13 q^{-1} -16 q^{-2} +17 q^{-3} -14 q^{-4} +12 q^{-5} -6 q^{-6} +3 q^{-7} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^{-2} +2 z^2 a^6-2 a^6 z^{-2} -a^6-3 z^4 a^4-4 z^2 a^4+a^4 z^{-2} +z^6 a^2+2 z^4 a^2+2 z^2 a^2-z^4+1 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 a^5 z^9+2 a^3 z^9+5 a^6 z^8+12 a^4 z^8+7 a^2 z^8+3 a^7 z^7+9 a^5 z^7+15 a^3 z^7+9 a z^7-9 a^6 z^6-18 a^4 z^6-4 a^2 z^6+5 z^6-3 a^7 z^5-23 a^5 z^5-36 a^3 z^5-15 a z^5+z^5 a^{-1} +6 a^8 z^4+16 a^6 z^4+7 a^4 z^4-9 a^2 z^4-6 z^4+7 a^7 z^3+21 a^5 z^3+19 a^3 z^3+5 a z^3-11 a^8 z^2-16 a^6 z^2-3 a^4 z^2+2 a^2 z^2-9 a^7 z-9 a^5 z+6 a^8+9 a^6+3 a^4+1+2 a^7 z^{-1} +2 a^5 z^{-1} -a^8 z^{-2} -2 a^6 z^{-2} -a^4 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



