L11a230
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a230's Link Presentations]
| Planar diagram presentation | X8192 X2,11,3,12 X12,3,13,4 X16,5,17,6 X18,13,19,14 X14,17,15,18 X6718 X4,15,5,16 X22,20,7,19 X20,10,21,9 X10,22,11,21 |
| Gauss code | {1, -2, 3, -8, 4, -7}, {7, -1, 10, -11, 2, -3, 5, -6, 8, -4, 6, -5, 9, -10, 11, -9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u^2 v^4-5 u^2 v^3+6 u^2 v^2-2 u^2 v-u v^4+7 u v^3-11 u v^2+7 u v-u-2 v^3+6 v^2-5 v+2}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{7}{\sqrt{q}}-\frac{12}{q^{3/2}}+\frac{15}{q^{5/2}}-\frac{19}{q^{7/2}}+\frac{18}{q^{9/2}}-\frac{16}{q^{11/2}}+\frac{12}{q^{13/2}}-\frac{7}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^7+3 z^3 a^7+3 z a^7-z^7 a^5-4 z^5 a^5-6 z^3 a^5-2 z a^5+2 a^5 z^{-1} -z^7 a^3-4 z^5 a^3-7 z^3 a^3-7 z a^3-3 a^3 z^{-1} +z^5 a+3 z^3 a+3 z a+a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+2 z^3 a^{11}-z a^{11}-3 z^6 a^{10}+5 z^4 a^{10}-2 z^2 a^{10}-5 z^7 a^9+7 z^5 a^9-3 z^3 a^9+z a^9-6 z^8 a^8+9 z^6 a^8-8 z^4 a^8+4 z^2 a^8-4 z^9 a^7+6 z^5 a^7-4 z^3 a^7-z a^7-z^{10} a^6-11 z^8 a^6+26 z^6 a^6-24 z^4 a^6+9 z^2 a^6-7 z^9 a^5+6 z^7 a^5+8 z^5 a^5-10 z^3 a^5+4 z a^5-2 a^5 z^{-1} -z^{10} a^4-9 z^8 a^4+21 z^6 a^4-10 z^4 a^4-2 z^2 a^4+3 a^4-3 z^9 a^3-2 z^7 a^3+18 z^5 a^3-18 z^3 a^3+10 z a^3-3 a^3 z^{-1} -4 z^8 a^2+6 z^6 a^2+4 z^4 a^2-8 z^2 a^2+3 a^2-3 z^7 a+8 z^5 a-7 z^3 a+3 z a-a z^{-1} -z^6+3 z^4-3 z^2+1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



