L11n233
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n233's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X9,18,10,19 X6,13,7,14 X14,7,15,8 X8,15,1,16 X17,22,18,9 X21,16,22,17 X19,4,20,5 X5,20,6,21 |
| Gauss code | {1, -2, 3, 10, -11, -5, 6, -7}, {-4, -1, 2, -3, 5, -6, 7, 9, -8, 4, -10, 11, -9, 8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u^3 v^5+u^2 v^4-3 u^2 v^3+2 u^2 v^2-u^2 v-u v^4+2 u v^3-3 u v^2+u v-1}{u^{3/2} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{9/2}}-\frac{1}{q^{13/2}}-\frac{1}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{4}{q^{19/2}}+\frac{5}{q^{21/2}}-\frac{5}{q^{23/2}}+\frac{4}{q^{25/2}}-\frac{3}{q^{27/2}}+\frac{1}{q^{29/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -2 a^{13} z^3-4 a^{13} z-a^{13} z^{-1} +a^{11} z^7+9 a^{11} z^5+23 a^{11} z^3+19 a^{11} z+3 a^{11} z^{-1} -a^9 z^9-9 a^9 z^7-28 a^9 z^5-37 a^9 z^3-19 a^9 z-2 a^9 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{18} z^4-a^{18} z^2+3 a^{17} z^5-5 a^{17} z^3+a^{17} z+3 a^{16} z^6-4 a^{16} z^4+a^{15} z^7+3 a^{15} z^5-7 a^{15} z^3+3 a^{15} z+3 a^{14} z^6-2 a^{14} z^4-a^{14} z^2+a^{14}+4 a^{13} z^5-6 a^{13} z^3+5 a^{13} z-a^{13} z^{-1} +a^{12} z^8-9 a^{12} z^6+26 a^{12} z^4-21 a^{12} z^2+3 a^{12}+a^{11} z^9-10 a^{11} z^7+32 a^{11} z^5-41 a^{11} z^3+22 a^{11} z-3 a^{11} z^{-1} +a^{10} z^8-9 a^{10} z^6+23 a^{10} z^4-19 a^{10} z^2+3 a^{10}+a^9 z^9-9 a^9 z^7+28 a^9 z^5-37 a^9 z^3+19 a^9 z-2 a^9 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



